Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT)※
Received date: 2021-12-23
Online published: 2022-03-15
Supported by
National Natural Science Foundation of China(22078314); National Natural Science Foundation of China(21878286); National Natural Science Foundation of China(21908216); Dalian Institute of Chemical Physics(DICPI202142); Dalian Institute of Chemical Physics(DICPI201938); Dalian Institute of Chemical Physics(DICPZZBS201805); The authors thank the support from the Ministry of Education, Singapore(MOE-MOET2EP10120-0007); Singapore University of Technology and Design(SUTD-ZJU (VP) 201905)
During the past 170 years, organic small molecular fluorescent dyes had been widely applied in fluorescence labeling, fluorescence probes and bioimaging. And their structures and performances continually evolved with development of synthetic method and application. However, the emerging super-resolution imaging put forward higher requirements at brightness, stability and switching performance of organic small molecular fluorescent dyes, which also offers new opportunity for developing novel dyes at the same time. So, chemists presently pay more attentions on brightness and photostability. Twisted intramolecular charge transfer (TICT), the major nonradiative decay channel in organic small molecular fluorescent dyes, seriously decrease brightness and photostability. Therefore, inhibiting TICT has became the crucial strategy to develop organic small molecular fluorescent dyes towards super-resolution imaging. This review will firstly demonstrate mechanism and development of TICT and emphatically introduce the progress in improving organic small molecular fluorescent dyes based on inhibiting TICT.
Ning Xu , Qinglong Qiao , Xiaogang Liu , Zhaochao Xu . Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT)※[J]. Acta Chimica Sinica, 2022 , 80(4) : 553 -562 . DOI: 10.6023/A21120578
[1] | Planchon, T. A.; Gao, L.; Milkie, D. E.; Davidson, M. W.; Galbraith, J. A.; Galbraith, C. G.; Betzig, E. Nat. Methods 2011, 8, 417. |
[2] | Hell, S. W. Angew. Chem., Int. Ed. 2015, 54, 8054. |
[3] | Huang, B.; Babcock, H.; Zhuang, X.-W. Cell 2010, 143, 1047. |
[4] | Jones, S. A.; Shim, S.-H.; He, J.; Zhuang, X.-W. Nat. Methods 2011, 8, 499. |
[5] | Balzarotti, F.; Eilers, Y.; Gwosch, K. C.; Gynna, A. H.; Westphal, V.; Stefani, F. D.; Elf, J.; Hell, S. W. Science 2017, 355, 606. |
[6] | Baddeley, D.; Bewersdorf, J. Annu. Rev. Biochem. 2018, 87, 965. |
[7] | Yu, J. Annu. Rev. Phys. Chem. 2016, 67, 565. |
[8] | Sydor, A. M.; Czymmek, K. J.; Puchner, E. M.; Mennella, V. Trends Cell Biol. 2015, 25, 730. |
[9] | Huang, B.; Bates, M.; Zhuang, X.-W. Annu. Rev. Biochem. 2009, 78, 993. |
[10] | Wang, L.; Frei, M. S.; Salim, A.; Johnsson, K. J. Am. Chem. Soc. 2019, 141, 2770. |
[11] | Fernández-Suárez, M.; Ting, A. Y. Nat. Rev. Mol. Cell Biol. 2008, 9, 929. |
[12] | Uno, S. N.; Tiwari, D. K.; Kamiya, M.; Arai, Y.; Nagai, T.; Urano, Y. Microscopy 2015, 64, 263. |
[13] | van de Linde, S.; Heilemann, M.; Sauer, M. Annu. Rev. Phys. Chem. 2012, 63, 519. |
[14] | Yang, Z.-G.; Xiong, J.; Zhang, W.; Li, W.; Pan, W.-H; Zhang, J.-G.; Gu, Z.-Y.; Huang, M.-N.; Qu, J.-L. Acta Chim. Sinica 2020, 78, 130. (in Chinese) |
[14] | (杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报, 2020, 78, 130.) |
[15] | Shcherbakova, D. M.; Sengupta, P.; Lippincott-Schwartz, J.; Verkhusha, V. V. Annu. Rev. Biophys. 2014, 43, 303. |
[16] | Mishin, A. S.; Belousov, V. V.; Solntsev, K. M.; Lukyanov, K. A. Curr. Opin. Chem. Biol. 2015, 27, 1. |
[17] | Yu, M.; Zhang, Z.-J.; Zhu, G.-W.; Gu, Z.-H.; Duan, Y.-L.; Yu, L.-C.; Gao, G.-B.; Sun, T.-L. Acta Chim. Sinica 2021, 79, 1281. (in Chinese) |
[17] | (余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.) |
[18] | Jin, D.-Y.; Xi, P.; Wang, B.-M.; Zhang, L.; Enderlein, J.; van Oijen, A. M. Nat. Methods 2018, 15, 415. |
[19] | Pan, L.-X.; Huang, Y.-Q.; Sheng, K.; Zhang, R.; Fan, Q.-L.; Huang, W. Acta Chimica Sinica, 2021, 79, 1097. (in Chinese) |
[19] | (潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.) |
[20] | Cai, Z.; Zhang, Y.-W.; Jiang, L.-P.; Zhu, J.-J. Acta Chim. Sinica 2021, 79, 481. (in Chinese) |
[20] | (蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.) |
[21] | Gao, H.-Q.; Jiao, D.; Ou, H.-L.; Zhang, J.-T.; Ding, D. Acta Chim. Sinica 2021, 79, 319. (in Chinese) |
[21] | (高贺麒, 焦迪, 欧翰林, 章经天, 丁丹, 化学学报, 2021, 79, 319.) |
[22] | Luo, X.-R.; Chen, M.-W.; Yang, Q.-L. Acta Chim. Sinica 2020, 78, 373. (in Chinese) |
[22] | (罗兴蕊, 陈敏文, 杨晴来, 化学学报, 2020, 78, 373.) |
[23] | Sang, R.-Y.; Xu, X.-P.; Wang, Q.; Fan, Q.-L.; Huang, W. Acta Chim. Sinica 2020, 78, 901. (in Chinese) |
[23] | (桑若愚, 许兴鹏, 王其, 范曲立, 黄维, 化学学报, 2020, 78, 901.) |
[24] | Ren, J.-B.; Wang, L.; Guo, R.; Tang, Y.-H.; Zhou, H.-M.; Lin, W.-Y. Acta Chim. Sinica 2021, 79, 87. (in Chinese) |
[24] | (任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英, 化学学报, 2021, 79, 87.) |
[25] | Hübner, K. Chem. Unserer Zeit 2006, 40, 274. |
[26] | Travis, A. S. Technol. Cult. 1990, 31, 51. |
[27] | Beija, M.; Afonso, C. A.; Martinho, J. M. G. Chem. Soc. Rev. 2009, 38, 2410. |
[28] | Lavis, L. D. Annu. Rev. Biochem. 2017, 86, 825. |
[29] | Lavis. L. D.; Raines. R. T. ACS Chem. Biol. 2014, 9, 855. |
[30] | Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142. |
[31] | Zheng, Q.-S.; Lavis, L. D. Curr. Opin. Chem. Biol. 2017, 39, 32. |
[32] | Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899. |
[33] | Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett. 1973, 19, 315. |
[34] | Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971. |
[35] | Ozawa, R.; Hayashita, T.; Matsui, T.; Nakayama, C.; Yamauchi, A.; Suzuki, I. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 253. |
[36] | Wang, C.; Chi, W.-J.; Qiao, Q.-L.; Tan, D.; Xu, Z.-C.; Liu, X.-G. Chem. Soc. Rev. 2021, 50, 12656. |
[37] | Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A. J. Lumin. 1979, 18-19, 420. |
[38] | Jones, G.; Jackson, W. R.; Choi, C. Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294. |
[39] | Whitaker, J. E.; Haugland, R. P.; Ryan, D.; Hewitt, P. C.; Haugland, R. P.; Prendergast, F. G. Anal. Biochem. 1992, 207, 267. |
[40] | Kubin, R. F.; Fletcher, A. N. J. Lumin. 1982, 27, 445. |
[41] | Song, X.-Z.; Johnson, A.; Foley, J. J. Am. Chem. Soc. 2008, 130, 17652. |
[42] | Grimm, J. B.; English, B. P.; Chen, J.-J.; Slaughter, J. P.; Zhang, Z.-J.; Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.; Singer, R. H.; Lionnet, T.; Lavis, L. D. Nat. Methods 2015, 12, 244. |
[43] | Grimm, J. B.; Muthusamy, A. K.; Liang, Y.-J.; Brown, T. A.; Lemon, W. C.; Patel, R.; Lu, R.-W.; Macklin, J. J.; Keller, P. J.; Ji, N.; Lavis, L. D. Nat. Methods 2017, 14, 987. |
[44] | Liu, X.-G.; Qiao, Q.-L.; Tian, W.-M.; Liu, W.-J.; Chen, J.; Lang, M. J.; Xu, Z.-C. J. Am. Chem. Soc. 2016, 138, 6960. |
[45] | Du, J.-J.; Gu, Q.-Y.; Chen, J.-Y.; Fan, J.-L.; Peng, X.-J. Sens. Actuators B Chem. 2018, 265, 204. |
[46] | Xu, Z.-Y.; Zhao, X.-F.; Zhou, M.; Zhang, Z.-J.; Qin, T.-Y.; Wang, D.; Wang, L.; Peng, X.-J.; Liu, B. Sens. Actuators B Chem. 2021, 345, 130367. |
[47] | Ye, Z.-W; Yang, W.; Wang, C.; Zheng, Y.; Chi, W.-J; Liu, X.-G; Huang, Z.-L; Li, X.-Y.; Xiao, Y. J. Am. Chem. Soc. 2019, 141, 14491. |
[48] | Lv, X.; Gao, C.-M.; Han, T.-H.; Shi, H.; Guo, W. Chem. Commun. 2020, 56, 715. |
[49] | Lv, X.; Han, T.-H.; Wu, Y.; Zhang, B.-R.; Guo, W. Chem. Commun. 2021, 57, 9744. |
[50] | Singha, S.; Kim, D.; Roy, B.; Sambasivan, S.; Moon, H.; Rao, A. S.; Kim, J.; Joo, Y. T.; Park, J. W.; Rhee, Y. M.; Wang, T.; Kim, K. H.; Shin, Y. H.; Jung, J.; Ahn, K. H. Chem. Sci. 2015, 6, 4335. |
[51] | Hoelzel, C. A.; Hu, H.; Wolstenholme, C. H.; Karim, B. A.; Munson, K. T.; Jung, K. H.; Zhang, H.; Liu, Y.; Yennawar, H. P.; Asbury, J. B.; Li, X.-S.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 4785. |
[52] | Butkevich, A. N.; Bossi, M. L.; Lukinavic?ius, G.; Hell, S. W. J. Am. Chem. Soc. 2019, 141, 981. |
[53] | Kuznetsova, N. A.; Kaliya, O. L. Russ. Chem. Rev. 1992, 61, 683. |
[54] | Winters, B. H.; Mandelberg, H. I.; Mohr, W. B. Appl. Phys. Lett. 1974, 25, 723. |
[55] | Chen, C.-C.; Lu, C.-S.; Mai, F.-D.; Weng, C.-S. J. Hazard. Mater. 2006, 137, 1600. |
[56] | Li, X.-Z.; Liu, G.-M.; Zhao, J.-C. New J. Chem. 1999, 23, 1193. |
[57] | Evans, N. A. J. Soc. Dyers Colour. 1973, 89, 332. |
[58] | Grimm, J. B.; Xie, L.-Q.; Casler, J. C.; Patel, R.; Tkachuk, A. N.; Falco, N.; Choi, H.; Lippincott-Schwartz, J.; Brown, T. A.; Glick, B. S.; Liu, Z.; Lavis, L. D. JACS Au 2021, 1, 690. |
[59] | Rappoport, D.; Furche, F. J. Am. Chem. Soc. 2004, 126, 1277. |
[60] | Köhn, A.; Hättig, C. J. Am. Chem. Soc. 2004, 126, 7399. |
[61] | Jödicke, C. J.; Lüthi, H. P. J. Am. Chem. Soc. 2003, 125, 252. |
[62] | Wang, C.; Qiao, Q.-L.; Chi, W.-J.; Chen, J.; Liu, W.-J.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X.-F.; Zhou, W.; Xu, N.; Zhang, Q.-S.; Xu, Z.-C.; Liu, X.-G. Angew. Chem. Int. Ed. 2020, 59, 10160. |
/
〈 |
|
〉 |