Communication

Lewis Acid in NaY Zeolite High Selectively Catalyze Methanol to Dimethoxymethane via Methyl Nitrite

  • Huibo Jiang ,
  • Shanshan Lin ,
  • Yuping Xu ,
  • Jing Sun ,
  • Zhongning Xu ,
  • Guocong Guo
Expand
  • a College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-31

  Online published: 2022-03-23

Supported by

National Key Research and Development Program of China(2021YFB3801604); National Key Research and Development Program of China(2017YFA0206802); National Key Research and Development Program of China(2017YFA0700103); National Key Research and Development Program of China(2018YFA0704500); General Program of National Natural Science Foundation of China(22172171)

Abstract

Dimethoxymethane (DMM) has wide application in resin, solvent, and fuel fields as a fundamental organic chemical. The traditional route to synthesize DMM using methanol and formaldehyde as reactants via condensation reaction has poor efficiency. Methyl nitrite (MN), which is obtained by the reaction of methanol, oxygen and nitrite monoxide without catalysts, could be used as raw material to produce DMM through catalytic decomposition. The current work systematically investigated the catalytic activity and selectivity to DMM of several molecular sieves in MN decomposition reaction. The results show that the activity trend is NaY (97%)=HY (97%)>HZSM-5 (90%)>Hβ (89%)>NaZSM-5 (18%)>Naβ (6%), and the DMM selectivity trend is NaY (53%)>HY (12%)=Naβ (12%)>NaZSM-5 (7%)>Hβ (4%)>HZSM-5 (3%). X-ray diffraction (XRD), Brunner-Emmet-Teller measurements (BET), scanning electron microscope (SEM) and Pyridine-IR (Py-IR) experiments have been employed to reveal the structure-activity relationship of these molecular sieves. Combining the temperature-programmed desorption of CO2 experiments (CO2-TPD) data with the evaluation results of the catalytic performance of the zeolite catalyst, the basic sites of the zeolite have no direct connection to the catalytic MN decomposition process. Meanwhile, the calcination temperature experiment of NH4-zeolite and the catalytic performance test experiment of NaY-tetraethoxysilane (TEOS) further proved that the acid site played an essential role in promoting the decomposition of MN, and the results show that the Lewis acidity sites of Na+ and low-coordinated Al metal center are key factors to catalyze MN to DMM high selectively. We have proposed the MN decomposition mechanism. In the process of MN decomposition, there are both proton generation and proton consumption processes. Intermediates in the decomposition process are easily protonated by Brönsted acid sites to form by-products. The Lewis acid site of zeolite is generally a low-coordinated Al metal center, which can effectively adsorb and stabilize the oxygen-containing intermediates generated during the decomposition of MN, especially the methoxy and formaldehyde intermediates involved in the production of DMM, which is very beneficial to

the decomposition of MN to DMM. We believe that the research in this paper can provide a new and efficient synthetic route for DMM.

Cite this article

Huibo Jiang , Shanshan Lin , Yuping Xu , Jing Sun , Zhongning Xu , Guocong Guo . Lewis Acid in NaY Zeolite High Selectively Catalyze Methanol to Dimethoxymethane via Methyl Nitrite[J]. Acta Chimica Sinica, 2022 , 80(4) : 438 -443 . DOI: 10.6023/A21120619

References

[1]
Sun, R.; Delidovich, I.; Palkovits, R. ACS Catal. 2019, 9, 1298.
[2]
Ren, Y.; Huang, Z.-H.; Jiang, D.-M.; Liu, L.-X.; Zeng, K.; Liu, B.; Wang, X.-B. P. I. Mech. Eng. D: J. Aut. Eng. 2005, 219, 905.
[3]
Maricq, M. M.; Chase, R. E.; Podsiadlik, D. H. Siegl, W. O.; Kaiser, E. W. Sae Int. J. Eng. 1998, 107, 1504.
[4]
Lian, H.-K.; Long, H.-M. Nat. Gas Ind. 2012, 37, 68.
[5]
Lautenschütz, L.; Oestreich, D.; Seidenspinner, P.; Arnold, U.; Sauer, J. Fuel 2016, 173, 129.
[6]
Fu, Y.-C.; Sun, Q.; Shen, J.-Y. Chin. J. Catal. 2009, 30, 791.
[7]
Xie, Z.-Q.; Chen, C.-B.; Hou, B.; Sun, D.-K.; Guo, H.-Q.; Wang, J.-G.; Li, D.-B.; Jia, L.-T. J. Phys. Chem. C. 2018, 122, 9909.
[8]
Vermeire, F. H.; Carstensen, H. H.; Herbinet, O.; Battin-Leclerc, F.; Marin, G. B.; Van, G.; Kevin, M. Com. Flame. 2018, 190, 270.
[9]
Liu, Z.-Y.; Zhang, Z.-Y.; Ge, C.-Y.; Wang, H.; Li, L. Chem. Ind. Times. 2014, 1, 27. (in Chinese)
[9]
(刘震宇, 张中宇, 葛常艳, 王辉, 李磊, 化工时刊, 2014, 1, 27.)
[10]
Tatibouët, J. M. Appl. Catal. A Gen. 1997, 148, 213.
[11]
Zhuo, G.-L.; Jiang, X.-Z. Catal. Lett. 2002, 2, 219.
[12]
Li, Z.-H.; Wang, W.-H.; Yin, D.-X.; Lv, J.; Ma, X.-B. Front. Chem. Sci. Eng. 2012, 6, 410.
[13]
Xu, Z.-N.; Sun, J.; Lin, C.-S.; Jiang, X.-M.; Chen, Q.-S.; Peng, S.-Y.; Wang, M.-S.; Guo, G.-C. ACS Catal. 2013, 3, 118.
[14]
Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Chen, Y.-M.; Sun, J.; Wang, Z.-Q.; Wang, M.-S.; Guo, G.-C. Chem. Commun. 2013, 49, 5718.
[15]
Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Chen, Y.-M.; Lv, D.-M.; Lu, G.; Guo, G.-C. Catal. Sci. Tech. 2014, 4, 1925.
[16]
Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Lv, D.-M.; Sun, J.; Chen, Y.-M.; Guo, G.-C. ACS Catal. 2015, 5, 4410.
[17]
Wang, Z.-Q.; Sun, J.; Xu, Z.-N.; Guo, G.-C. Nanoscale 2020, 12, 20131.
[18]
Jing, K.-Q.; Fu, Y.-Q.; Chen, Z.-N.; Zhang, T.; Sun, J.; Xu, Z.-N.; Guo, G.-C. ACS Appl. Mater. Inter. 2021, 13, 24856.
[19]
Jing, K.-Q.; Fu, Y.-Q.; Wang, Z.-Q.; Chen, Z.-N.; Guo, G.-C. Nanoscale 2020, 12, 27.
[20]
Zhang, M.-T.; Yan, T.-T.; Dai, W.-L.; Guan, N.-J.; Li, L.-D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
[20]
(张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报,, 2020, 78, 1404.)
[21]
Yao, X.-T.; Huang, X.; Lin, Y.-X.; Liu, Y.-M. Acta Chim. Sinica 2020, 78, 1111. (in Chinese)
[21]
(姚旭婷, 黄鑫, 林玉霞, 刘月明, 化学学报,, 2020, 78, 1111.)
[22]
Li, Y.-C.; Wang, H.; Dong, M.; Li, J.-F.; Wang, G.-F.; Qin, Z.-F.; Fan, W.-B.; Wang, J.-G. Acta Chim. Sinica 2016, 74, 529. (in Chinese)
[22]
(李艳春, 王浩, 董梅, 李俊汾, 王国富, 秦张峰, 樊卫斌, 王建国, 化学学报,, 2016, 74, 529.)
[23]
Chung, K.-H.; Park, B.-G. J. Ind. Eng. Chem. 2009, 15, 388.
[24]
Sun, D.; Sun, B.; Pei, Y.; Yan, S.-R.; Fan, K.-N.; Qiao, M.-H.; Zhang, X.-X.; Zong, B.-N. Acta Chim. Sinica 2021, 79, 771. (in Chinese)
[24]
(孙冬, 孙博, 裴燕, 闫世润, 范康年, 乔明华, 张晓昕, 宗保宁, 化学学报,, 2021, 79, 771.)
[25]
Feng, A.-H.; Yu, Y.; Yu, Y.; Song, L.-X. Acta Chim. Sinica 2018, 76, 17. (in Chinese)
[25]
(冯爱虎, 于洋, 于云, 宋力昕, 化学学报,, 2018, 76, 17.)
[26]
Cheng, S.-J.; Zeng, Y.; Pei, Y.; Fan, K.-N.; Qiao, M.-H.; Zong, B.-N. Acta Chim. Sinica 2019, 77, 1054. (in Chinese)
[26]
(成诗婕, 曾杨, 裴燕, 范康年, 乔明华, 宗保宁, 化学学报,, 2019, 77, 1054.)
[27]
Zhou, L.-P.; Liu, Z.; Bai, Y.-Q.; Lu, T.-L.; Yang, X.-M.; Xu, J. J. Energy. Chem. 2016, 25, 141.
[28]
Celik, F. E.; Kim, T. J.; Bell, A. T. J. Catal. 2010, 270, 185.
[29]
Xin, Q. Research Methods of Solid Catalysts (Volume One), Science Press, Beijing, 2004, p. 273. (in Chinese)
[29]
(辛勤, 固体催化剂研究方法(上), 科学出版社, 北京, 2004, p. 273.)
[30]
Choudhary, V. R.; Pataskar, S. G. Mater. Chem. Phys. 1986, 13, 587.
[31]
Xin, Q.; Xu, J. Modern Catalytic Chemistry, Science Press, Beijing, 2016, p. 128. (in Chinese)
[31]
(辛勤, 徐杰, 现代催化化学, 科学出版社, 北京, 2016, p. 128.)
Outlines

/