Construction and Application of Porous Ionic Liquids
Received date: 2022-01-27
Online published: 2022-03-23
Supported by
Innovation Foundation for Doctor Dissertation of NWPU(CX2021110); National Natural Science Foundation of China(21905228); Aeronautical Science Foundation of China(2018ZF53065)
The concept of porous liquids (PLs) was initially proposed and divided into three types in 2007 by James, which combine the merits of porous solids and flowing liquids. Recently, PLs have made great progress in preparations and applications. However, challenges for PLs still present to be addressed including their high density, viscosity melting temperatures, and materials cost, which severely limit their large-scale applications in flowing systems. Therefore, it is urgent to look for ideal sterically hindered solutions to construct PLs materials. Notably, the unique properties of ionic liquids (ILs), such as the tunable physicochemical properties for task-specific applications, economic, low regeneration energy requirements, enable them as promising candidates for constructing novel porous ionic liquids (PILs). Over the past five years, PILs based on ILs and existing advanced porous solids, such as porous organic cages (POCs), metal-organic frameworks (MOFs), porous carbons, zeolites, porous polymers, etc., have successively witnessed the achievement in synthesis strategies and applications. Notably, PILs exhibit remarkable properties including permanent porosity, negligible volatility, high thermal/chemical stability, non-corrosivity, adjustable melting temperature, viscosity, high gas solubilities, and fast gas diffusion, which have accelerated their applications in gas adsorption/separation, chiral separation, catalytic conversion, extraction, molecular separations, and other fields. In this review, we summarized recent research progress on the synthesis strategies, properties, and applications of PILs. In the end, challenges and future developments for PILs are summarized and prospected.
Key words: porous ionic liquids; porous liquids; ionic liquids; gas capture; separation; catalysis
Xiaoqian Li , Jing Zhang , Fangfang Su , Dechao Wang , Dongdong Yao , Yaping Zheng . Construction and Application of Porous Ionic Liquids[J]. Acta Chimica Sinica, 2022 , 80(6) : 848 -860 . DOI: 10.6023/A22010053
[1] | Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J. B.; Zhao, D. Y.; AlBahily, K.; Vinu, A. Chem. Soc. Rev. 2020, 49, 4360. |
[2] | Wang, J. Y.; Huang., L.; Yang, R. Y.; Zhang, Z.; Wu, J. W.; Gao, Y. S.; Wang, Q.; O'Hare, D.; Zhong, Z. Y. Energy Environ. Sci. 2014, 7, 3478. |
[3] | Ning, H. L.; Yang, Z. Y.; Yin, Z. Q.; Wang, D. C.; Meng, Z. Y.; Wang, C. G.; Zhang, Y. T.; Chen, Z. P. ACS Appl. Mater. Interfaces 2021, 13, 17781. |
[4] | Kolle, J. M.; Fayaz, M.; Sayari, A. Chem. Rev. 2021, 121, 7280. |
[5] | Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoudi, M. J. Am. Chem. Soc. 2015, 137, 13308. |
[6] | Jie, K. C.; Zhou, Y. J.; Ryan, H. P.; Dai, S.; Nitschke, J. R. Adv. Mater. 2021, 202005745. |
[7] | Little, M. A.; Cooper, A. I. Adv. Funct. Mater. 2020, 30, 1909842. |
[8] | Zou, L. F.; Sun, Y. J.; Che, S.; Yang, X. Y.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; Perry, Z.; Zhou, H. C. Adv. Mater. 2017, 29, 1700229. |
[9] | Lin, Z. J.; Cao, R. Acta Chim. Sinica 2020, 78, 1309. (in Chinese) |
[9] | (林祖金, 曹荣, 化学学报, 2020, 78, 1309.) |
[10] | Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (in Chinese) |
[10] | (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.) |
[11] | Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y.; Huang, L.; Gao, Y. H; Wang, Z.; Jo, C. B.; Wang, Q.; Wang, L. D.; Liu, Y. F.; Louis, B.; Scott, J.; Roger, A. C.; Amal, R.; He, H.; Park, S. E. Chem. Soc. Rev. 2020, 49, 8584. |
[12] | O'Reilly, N.; Giri, N.; James, S. L. Chem. Eur. J. 2007, 13, 3020. |
[13] | Ahmad, M. Z.; Alessio, F. CRGSC 2021, 4, 100070. |
[14] | Egleston, B. D.; Luzyanin, K. V.; Brand, M. C.; Clowes, R.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Angew. Chem. Int. Ed. 2020, 59, 7362. |
[15] | Zhang, J. H.; Wei, M. J.; Lu, Y. L.; Wei, Z. W.; Wang, H. P.; Pan, M. ACS Appl. Energy Mater. 2020, 3, 12108. |
[16] | Wang, D. C.; Xin, Y. Y.; Yao, D. D.; Li, X. Q.; Ning, H. L.; Zhang, H. M.; Wang, Y. D.; Ju, X. Q.; He, Z. J.; Yang, Z. Y.; Fan, W. D.; Li, P. P.; Zheng, Y. P. Adv. Funct. Mater. 2021, 2104162. |
[17] | Li, Y. ChemistrySelect 2020, 5, 13664. |
[18] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Yao, D. D.; Zheng, Y. P. Prog. Chem. 2021, 33, 1874. (in Chinese) |
[18] | (王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍, 化学进展, 2021, 33, 1874.) |
[19] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2021, 416, 127625. |
[20] | Liu, S.; Meng, L.; Fan, J. ChemistrySelect 2021, 6, 5027. |
[21] | Li, X. Q.; Yao, D. D.; Wang, D. C.; He, Z. J.; Tian, X. L.; Xin, Y. Y.; Su, F. F.; Wang, H. N.; Zhang, J.; Li, X. Y.; Li, M. T.; Zheng, Y. P. Chem. Eng. J. 2022, 429, 132296. |
[22] | Kumar, R.; Dhasaiyan, P.; Naveenkumar, P. M.; Sharma, K. P. Nanoscale Adv. 2019, 1, 4067. |
[23] | Zhang, J. H.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 932. |
[24] | Greenaway, R. L.; Holden, D.; Eden, E. G. B.; Stephenson, A.; Yong, C. W.; Bennison, M. J.; Hasell, T.; Briggs, M. E.; James, S. L.; Cooper, A. I. Chem. Sci. 2017, 8, 2640. |
[25] | Kai, A.; Egleston, B. D.; Tarzia, A.; Clowes, R.; Briggs, M. E.; Jelfs, K. E.; Cooper, A. I.; Greenaway, R. L. Adv. Funct. Mater. 2021, 2106116. |
[26] | Cahir, J.; Tsang, M. Y.; Lai, B. B; Hughes, D.; Alam, M. A.; Jacquemin, J.; Rooney, D.; James, S. L. Chem. Sci. 2020, 11, 2077. |
[27] | Li, X. Q.; Wang, D. C.; Ning, H. L; Xin, Y. Y.; He, Z. J.; Su, F. F.; Wang, Y. D.; Zhang, J.; Wang, H. N.; Qian, L. W.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Sep. Purif. Technol. 2021, 276, 119305. |
[28] | He, S. F.; Chen, L. H.; Cui, J.; Yuan, B.; Wang, H. L.; Wang, F.; Yu, Y.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2019, 141, 19708. |
[29] | Fulvio, P. F.; Dai, S. Chem 2020, 6, 3263. |
[30] | Zeeshan, M.; Nozari, V.; Yagci, M. B.; Isik, T.; Unal, U.; Ortalan, V.; Keskin, S.; Uzun, A. J. Am. Chem. Soc. 2018, 140, 10113 |
[31] | Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. |
[32] | Mota-Martinez, M. T.; Brandl, P.; Hallett, J. P.; Mac Dowell, N. Mol. Syst. Des. Eng. 2018, 3, 560. |
[33] | Gomes, M. C.; Pison, L.; Cervinka, C.; Padua, A. Angew. Chem. Int. Ed. 2018, 57, 11909. |
[34] | Avila, J.; Červinka, C.; Dugas, P. Y.; Pádua, A. A. H.; Gomes, M. C. Adv. Mater. Interfaces 2021, 2001982. |
[35] | McCrellis, C.; Taylor, S. F. R.; Jacquemin, J.; Hardacre, C. J. Chem. Eng. Data 2016, 61, 1092. |
[36] | Bhattacharyya, S.; Filippov, A.; Shah, F. U. Phys. Chem. Chem. Phys. 2017, 19, 31216. |
[37] | Peplow, M. C&EN 2020, 98, 9. |
[38] | Li, P. P.; Schott, J. A.; Zhang, J. S.; Mahurin, S. M.; Sheng, Y. J.; Qiao, Z. A.; Hu, X. X.; Cui, G. K.; Yao, D. D.; Brown, B.; Zheng, Y. P.; Dai, S. Angew. Chem. Int. Ed. 2017, 56, 14958. |
[39] | Su, F. F.; Li, X. Q.; Wang, Y. D.; He, Z. J.; Fan, L.; Wang, H. N.; Xie, J. L.; Zheng, Y. P.; Yao, D. D. Sep. Purif. Technol. 2021, 277, 119410. |
[40] | Hasell, T.; Copper, A. I. Nat. Rev. Mater. 2016, 1, 16053. |
[41] | Jie, K. C.; Onishi, N.; Schott, J. A.; Popovs, I.; Jiang, D. E.; Mahurin, S.; Dai, S. Angew. Chem. Int. Ed. 2020, 59, 2268. |
[42] | Ma, L. L.; Haynes, C. J. E.; Grommet, A. B.; Walczak, A.; Parkins, C. C.; Doherty, C. M.; Longley, L.; Tron, A.; Stefankiewicz, A. R.; Bennett, T. D.; Nitschke, J. R. Nat. Chem. 2020, 12, 270. |
[43] | Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 20915. |
[44] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T.; Li, P. P.; Wang, H. N.; He, Z. J.; Fan, W. D. ACS Appl. Mater. Interfaces 2021, 13, 2600. |
[45] | Wang, D. X.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2020, 416, 127625. |
[46] | Giri, N.; Del Popolo, M. G.; Melaugh, G.; Greenaway, R. L.; Ratzke, K.; Koschine, T.; Pison, L.; Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216. |
[47] | Kearsey, R. J.; Alston, B. M.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Chem. Sci. 2019, 10, 9454. |
[48] | Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y. G.; Peng, X. S. Small 2020, 16, 1907016. |
[49] | Shan, W. D.; Fulvio, P. F.; Kong, L. Y.; Schott, J. A.; Do-Thanh, C. L.; Tian, T.; Hu, X. X.; Mahurin, S. M.; Xing, H. B.; Dai, S. ACS Appl. Mater. Interfaces 2018, 10, 32. |
[50] | Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Langmuir 2018, 34, 3654. |
[51] | Li, P. P.; Chen, H.; Schott, J. A.; Li, B.; Zheng, Y. P.; Mahurin, S. M.; Jiang, D. E.; Cui, G. K.; Hu, X. X.; Wang, Y. Y.; Li, L. W.; Dai, S. Nanoscale 2019, 11, 1515. |
[52] | Lai, B. B.; Cahir, J.; Tsang, M. Y.; Jacquemin, J.; Rooney, D.; Murrer, B.; James, S. L. ACS Appl. Mater. Interfaces 2020, 13, 932. |
[53] | Zhao, X. M.; Yuan, Y. H.; Li, P. P.; Song, Z. J.; Ma, C. X.; Pan, D.; Wu, S. D.; Ding, T.; Guo, Z. H.; Wang, N. Chem. Commun. 2019, 55, 13179. |
[54] | Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Chem. Eng. J. 2021, 417, 129239. |
[55] | Wang, Z. H.; Zhao, P. P.; Wu, J.; Gao, J.; Zhang, L. Z.; Xu, D. M. New J. Chem. 2021, 45, 8557. |
[56] | Li, P. P.; Wang, D. C.; Zhang, L.; Liu, C.; Wu, F.; Wang, Y. K.; Wang, Z.; Zhao, Z. H.; Wu, W. W.; Liang, Y. P.; Li, Z. M.; Wang, W. D.; Zheng, Y. P. Small 2021, 2006687. |
[57] | Avila, J.; Lepre, L. F.; Santini, C. C.; Tiano, S. M.; Denis-Quanquin, S.; Chung Szeto, K.; Padua, A. A. H.; Gomes, M. C. Angew. Chem. Int. Ed. 2021, 60, 12876. |
[58] | Wang, Y. J.; Liu, Y. Z.; Li, H.; Guan, X. Y.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. J. Am. Chem. Soc. 2020, 142, 3736. |
[59] | Mow, R. E.; Lipton, A. S.; Shulda, S.; Gaulding, E. A.; Gennett, T.; Braunecker, W. A. J. Mater. Chem. A 2020, 8, 23455. |
[60] | Yang, N.; Lu, L. J.; Zhu, L. H.; Wu, P. W.; Tao, D. J.; Gong, J. H.; Chen, L. L.; Chao, Y. H.; Zhu, W. S. Inorg. Chem. Front. 2022, 9, 165. |
[61] | Zhou, Y.; Jocasta, A.; Berthet, N.; Legrand, S.; Santini, C. C.; Gomes, C. C.; Dufaud, V. Chem. Commun. 2021, 57, 7922. |
[62] | Chen, H.; Yang, Z. Z.; Peng, H. G.; Jie, K. C.; Li, P. P.; Ding, S. M.; Guo, W.; Suo, X.; Liu, J. X.; Yan, R.; Liu, W. M.; Do-Thanh, C. L.; Wang, H. M.; Wang, Z. D.; Han, L.; Yang, W. M.; Dai, S. Chem 2021, 7, 3340. |
[63] | Liu, W. Q.; Li, Z.; Xia, C. G. Prog. Chem. 2018, 30, 1143. (in Chinese) |
[63] | (刘文巧, 李臻, 夏春谷, 化学进展, 2018, 30, 1143.) |
/
〈 |
|
〉 |