Account

Recent Progress in GeSe Thin-Film Solar Cells

  • Bin Yan ,
  • Ding-Jiang Xue ,
  • Jin-Song Hu
Expand
  • CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-30

  Online published: 2022-03-23

Supported by

National Natural Science Foundation of China(21922512); National Natural Science Foundation of China(21875264)

Abstract

Germanium monoselenide (GeSe) is a promising photovoltaic absorber material for thin-film solar cells due to its appropriate bandgap (about 1.14 eV), high absorption coefficient (>105 cm–1 at visible light), large carrier mobility (about 128.7 cm2•V–1•s–1) and benign defect properties arising from its antibonding states at the valence band maximum. The theoretical Shockley-Quiesser efficiency limit for GeSe single junction solar cells determined by its bandgap is above 30%. Moreover, this simple binary compound possesses earth-abundant, nontoxic constituents and high stability in ambient atmosphere. The easy sublimation feature of GeSe enables the deposition of high-quality films through an industrial close-space sublimation method. The fundamental properties of GeSe with emphasis on the material, optical, electrical, and defect properties are introduced, and then the recent progress of fabrication of GeSe thin films and solar cells is summarized. Finally, a brief perspective on the further development of GeSe thin-film solar cells is provided.

Cite this article

Bin Yan , Ding-Jiang Xue , Jin-Song Hu . Recent Progress in GeSe Thin-Film Solar Cells[J]. Acta Chimica Sinica, 2022 , 80(6) : 797 -804 . DOI: 10.6023/A21120605

References

[1]
Lee, T. D.; Ebong, A. U. Renewable Sustainable Energy Rev. 2017, 70, 1286.
[2]
Xue, Q.; Sun, C.; Hu, Z.-C.; Huang, F.; Ye, X.-L.; Cao, Y. Acta Chim. Sinica 2015, 73, 179. (in Chinese)
[2]
(薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛, 化学学报, 2015, 73, 179.)
[3]
Zhou, J.-Z.; Xu, X.; Duan, B.-W.; Shi, J.-J.; Luo, Y.-H.; Wu, H.-J.; Li, D.-M.; Meng, Q.-B. Acta Chim. Sinica 2021, 79, 303. (in Chinese)
[3]
(周家正, 徐啸, 段碧雯, 石将建, 罗艳红, 吴会觉, 李冬梅, 孟庆波, 化学学报, 2021, 79, 303.)
[4]
Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.; Jiang, C.-S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D.; Swain, S.; Ablekim, T.; Lynn, K. G.; Metzger, W. K. Nat. Energy 2016, 1, 16015.
[5]
Liu, S.-C.; Li, Z.-B.; Yang, Y.-S.; Wang, X.; Chen, Y.-X.; Xue, D.-J.; Hu, J.-S. J. Am. Chem. Soc. 2019, 141, 18075.
[6]
Sobayel, K.; Shahinuzzaman, M.; Amin, N.; Karim, M. R.; Dar, M. A.; Gul, R.; Alghoul, M. A.; Sopian, K.; Hasan, A. K. M.; Akhtaruzzaman, M. Solar Energy 2020, 207, 479.
[7]
Yang, K.-J.; Son, D. H.; Sung, S. J.; Sim, J. H.; Kim, Y. I.; Park, S. N.; Jeon, D. H.; Kim, J. H.; Hwang, D. K.; Jeon, C. K.; Nam, D.; Cheong, H.; Kang, J.-K.; Kim, D. H. J. Mater. Chem. A 2016, 4, 10151.
[8]
Wu, J.-P.; Liu, S.-C.; Li, Z.-B.; Wang, S.; Xue, D.-J.; Lin, Y.; Hu, J.-S. Natl. Sci. Rev. 2021, 8, nwab047.
[9]
https://www.nrel.gov/pv/cell-efficiency.html (accessed December 2021).
[10]
Ibers, J. Nat. Chem. 2009, 1, 508.
[11]
Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. Adv. Energy Mater. 2014, 4, 1301465.
[12]
Yang, Y.; Lin, F.-Y.; Zhu, C.-T.; Chen, T.; Ma, S.-P.; Luo, Y.; Zhu, L.; Guo, X.-Y. Acta Chim. Sinica 2020, 78, 217. (in Chinese)
[12]
(杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益, 化学学报, 2020, 78, 217.)
[13]
Li, Z.-Q.; Liang, X.-Y.; Li, G.; Liu, H.-X.; Zhang, H.-Y.; Guo, J.-X.; Chen, J.-W.; Shen, K.; San, X.-Y.; Yu, W.; Schropp, R. E. I.; Mai, Y.-H. Nat. Commun. 2019, 10, 125.
[14]
Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R. E.; Poindexter, J. R.; Lee, Y.-S.; Sun, L.-Z.; Polizzotti, P.; Park, H. H.; Gordon, R. G.; Buonassisi, T. Adv. Mater. 2014, 26, 7488.
[15]
Xue, D.-J.; Yang, B.; Yuan, Z.-K.; Wang, G.; Liu, X.-S.; Zhou, Y.; Hu, L.; Pan, D.-C.; Chen, S.-Y.; Tang, J. Adv. Energy Mater. 2015, 5, 1501203.
[16]
Musselman, K. P.; Marin, A.; Mende, L. S.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202.
[17]
Xue, D.-J.; Shi, H.-J.; Tang, J. Acta Phys. Sin. 2015, 64, 038406. (in Chinese)
[17]
(薛丁江, 石杭杰, 唐江, 物理学报, 2015, 64, 038406.)
[18]
Wang, C.; Du, X.; Wang, S.-Y.; Deng, H.; Chen, C.; Niu, G.-D.; Pan, J.-C.; Li, K.-H.; Lu, S.-C.; Lin, X.-T.; Song, H.-S.; Tang, J. Front. Optoelectron. 2021, 14, 314.
[19]
Tang, R.-F.; Wang, X.-M.; Lian, W.-T.; Huang, J.-L.; Wei, Q.; Huang, M.-L.; Yin, Y.-W.; Jiang, C.-H.; Yang, S.-F.; Xing, G.-C.; Chen, S.-Y.; Zhu, C.-F.; Hao, X.-J.; Green, M. A.; Chen, T. Nat. Energy 2020, 5, 587.
[20]
Zhou, X.; Zhang, Q.; Gan, L.; Li, H.-Q.; Xiong, J.; Zhai, T.-Y. Adv. Sci. 2016, 3, 1600177.
[21]
Lu, W.-B.; Fang, Y.-Y.; Li, Z.-B.; Li, S. M.; Liu, S.-C.; Feng, M.-J.; Xue, D.-J.; Hu, J.-S. Chem. Commun. 2021, 57, 11461.
[22]
Liu, S.-C.; Yang, Y.-S.; Li, Z.-B.; Xue, D.-J.; Hu, J.-S. Mater. Chem. Front. 2020, 4, 775.
[23]
Xue, D.-J.; Liu, S.-C.; Dai, C.-M.; Chen, S.; He, C.; Zhao, L.; Hu, J.-S.; Wan, L.-J. J. Am. Chem. Soc. 2017, 139, 958.
[24]
Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X.-W.; Jiang, L.; Dong, H.-L.; Wei, Z.-M.; Li, J.-B.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 14976.
[25]
Liu, S.-C.; Dai, C.-M.; Min, Y.-M.; Hou, Y.; Proppe, A. H.; Zhou, Y.; Chen, C.; Chen, S.-Y.; Tang, J.; Xue, D.-J.; Sargent, E. H.; Hu, J.-S. Nat. Commun. 2021, 12, 670.
[26]
Liu, S.-C.; Mi, Y.; Xue, D.-J.; Chen, Y.-X.; He, C.; Liu, X. F.; Hu, J.-S.; Wan, L.-J. Adv. Electron. Mater. 2017, 3, 1700141.
[27]
Solanki, G. K.; Deshpande, M. P.; Agarwal, M. K.; Patel, P. D.; Vaidya, S. N. J. Mater. Sci. Lett. 2003, 22, 985.
[28]
Liu, S.-C.; Li, Z.-B.; Wu, J.-P.; Zhang, X.; Feng, M.-J.; Xue, D.-J.; Hu, J.-S. Sci. China Mater. 2021, 64, 2118.
[29]
Li, Z.-B.; Yan, H.-J.; Liu, X.-S.; Liu, S.-C.; Feng, M. J.; Wang, X.; Yan, B.; Xue, D.-J. J. Phys. Chem. Lett. 2021, 12, 10249.
[30]
Zhou, Y.; Li, Y.; Luo, J.-J.; Li, D.-B.; Liu, X.-S.; Chen, C.; Song, H.-B.; Ma, J.-Y.; Xue, D.-J.; Yang, B.; Tang, J. Appl. Phys. Lett. 2017, 111, 013901.
Outlines

/