Article

pH-Responsive Pickering Emulsions Synergistically Stabilized by Maleopimaric Acid and Alumina Nanoparticles

  • Xufa He ,
  • Kangle Jia ,
  • Longfei Yu ,
  • Mingjie Liu ,
  • Xiaoshan Zheng ,
  • Huanling Li ,
  • Jinlan Xin ,
  • Linjia Huang
Expand
  • a College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
    b Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665
* E-mail: (K.J.), Tel.: +86-020-32373291 (K.J.);

Received date: 2021-12-16

  Online published: 2022-03-29

Supported by

National Natural Science Foundation of China(21802025)

Abstract

Using organic particles to stabilize Pickering emulsions has attracted more and more attention. However, Pickering emulsions synergistically stabilized by organic particles with adjustable wettability combined with inorganic particles is rarely reported. Herein, maleopimaric acid (MPA) with multi-carboxylic acid groups and alumina nanoparticles are used to stabilize Pickering emulsions, and the transitions of the type of Pickering emulsions induced by pH and related mechanisms are systematically studied. With the increase of pH, resulting in the change of the type of emulsions from a W/O Pickering emulsion to an O/W Pickering emulsion to an O/W emulsion when only MPA is used. The increase of the hydrophilicity of MPA is the reason for the transformation of the emulsion. When alumina nanoparticles are added to the system, W/O Pickering emulsions can be transformed into O/W Pickering emulsions (pH=1), which is attributed to the increase of the hydrophilicity of MPA particles caused by the adsorption of alumina nanoparticles on the surface of MPA particles. When pH=6, both MPA particles and alumina nanoparticles have strong hydrophilicity and cannot form stable emulsions respectively, but the mixture of the two can form stable W/O Pickering emulsions. It is because that MPA particles and alumina nanoparticles can form hydrophobic complexes in aqueous solution. In addition, the influence of MPA concentration and volume fraction of oil phase on the appearance and droplet size of Pickering emulsion is studied. It is found that the droplet size of Pickering emulsion gradually decreases with the increase of MPA concentration. However, the increase of volume fraction of oil phase will cause the increase of droplet size. Finally, the stability mechanism of Pickering emulsion is studied by the measurement of Zeta potential, adsorption rate of particles at the oil-water interface, three phase contact angle and surface/interface tensions. The armor-like particles layer adsorbed on the oil-water interface and the network structure formed between the particles are the reason for the stability of emulsion droplets. This study provides a new avenue for the green preparation of Pickering emulsions, which will be important applications in the fields of cosmetics, medicine and new materials.

Cite this article

Xufa He , Kangle Jia , Longfei Yu , Mingjie Liu , Xiaoshan Zheng , Huanling Li , Jinlan Xin , Linjia Huang . pH-Responsive Pickering Emulsions Synergistically Stabilized by Maleopimaric Acid and Alumina Nanoparticles[J]. Acta Chimica Sinica, 2022 , 80(6) : 765 -771 . DOI: 10.6023/A21120567

References

[1]
Wu, J.; Ma, G. H. Small 2016, 12, 4582.
[2]
Ortiz, D. G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Engineering 2020, 6, 468.
[3]
Zhang, X.; Jia, K. L.; Zhang, L.; Zhang, J. J.; Dai, Y. Q.; Yu, L. F.; Wen, W.; Mai, Y. L. J. Mol. Liq. 2020, 313, 113505.
[4]
Kaz, D. M.; McGorty, R.; Mani, M.; Brenner, M. P.; Manoharan, V. N. Nat. Mater. 2012, 11, 138.
[5]
Aveyard, R. Soft Matter 2012, 8, 5233.
[6]
Xu, M. D.; Xu, L. F.; Ling, Q.; Pei, X. M.; Jiang, J. Z.; Zhu, H. Y.; Cui, Z. G.; Binks, B. P. Langmuir 2019, 38, 4068.
[7]
Yang, Y. Q.; Fang, Z. W.; Chen, X.; Zhang, W. W.; Xie, Y. M.; Chen, Y. H.; Liu, Z. G.; Yuan, W. E. Front. Pharmacol. 2017, 8, 287.
[8]
Chevalier, Y.; Bolzinger, M. A. Colloid. Surface. A 2013, 439, 23.
[9]
Dupont, H.; Maingret, V.; Schmitt, V.; Heroguez, V. Macromolecules 2021, 54, 4945.
[10]
Berton-Carabin, C. C.; Schroen, K. Annu. Rev. Food Sci. T. 2015, 6, 263.
[11]
Venkataramani, D.; Tsulaia, A.; Amin, S. Adv. Colloid Interface Sci. 2020, 283, 102234.
[12]
Harman, C. L. G.; Patel, M. A.; Guldin, S.; Davies, G. L. Curr. Opin. Colloid. Interface Sci. 2019, 39, 173.
[13]
Zheng, Y.; Luo, J.; Wei, W.; Liu, X. Acta Chim. Sinica 2017, 75, 391. (in Chinese)
[13]
(郑媛, 罗静, 魏玮, 刘晓亚, 化学学报, 2017, 75, 391.)
[14]
Wang, C.; Ning, Y.; Chen, Y.; Tong, Z. Acta Chim. Sinica 2012, 70, 1721. (in Chinese)
[14]
(王朝阳, 宁印, 陈云华, 童真, 化学学报, 2012, 70, 1721.)
[15]
Arab, D.; Kantzas, A.; Bryant, S. L. J. Pet. Sci. Eng. 2018, 163, 217.
[16]
Shi, Y. L.; Xiong, D. Z.; Li, Z. Y.; Wang, H. Y.; Pei, Y. C.; Chen, Y. K.; Wang, J. J. ACS Sustain. Chem. Eng. 2018, 6, 15383.
[17]
Pi, G.; Li, Y. M.; Bao, M. T.; Mao, L. L.; Gong, H. Y.; Wang, Z. N. ACS Sustain. Chem. Eng. 2016, 4, 3095.
[18]
Jiang, J. Z.; Ma, Y. X.; Cui, Z. G.; Binks, B. P. Langmuir 2016, 32, 8668.
[19]
Liu, K. H.; Jiang, J. Z.; Cui, Z. G.; Binks, B. P. Langmuir 2017, 33, 2296.
[20]
Zhu, Y.; Fu, T.; Liu, K. H.; Ling, Q.; Pei, X. M.; Jiang, J. Z.; Cui, Z. G.; Binks, B. P. Langmuir 2017, 33, 5724.
[21]
Yu, S. J.; Zhang, H. J.; Jiang, J. Z.; Cui, Z. G.; Xia, W. S.; Binks, B. P. Green Chem. 2020, 22, 5470.
[22]
Yu, S. J.; Lv, M.; Lu, G. P.; Cai, C.; Jiang, J. Z.; Cui, Z. G. Langmuir 2021, 37, 10683.
[23]
Tao, S. N.; Guan, X.; Li, Y. X.; Jiang, H.; Gong, S. J.; Ngai, T. J. Colloid Interface Sci. 2022, 607, 1491.
[24]
Tao, S. N.; Jiang, H.; Wang, R. J.; Yang, C.; Li, Y. X.; Ngai, T. ChemComm 2020, 56, 14011.
[25]
Wei, Z. J.; Yang, Y.; Yang, R.; Wang, C. Y. Green Chem. 2012, 14, 3230.
[26]
Liu, F.; Tang, C. H. J. Agric. Food Chem. 2014, 62, 5133.
[27]
Tong, Q. L.; Yi, Z.; Ran, Y. Q.; Chen, X. Y.; Chen, G. C.; Li, X. D. ACS Sustain. Chem. Eng. 2021, 9, 4076.
[28]
Moustafa, H.; El Kissi, N.; Abou-Kandil, A. I.; Abdel-Aziz, M.S.; Dufresne, A. ACS Appl. Mater. Inter. 2017, 9, 20132.
[29]
Binks, B. P.; Philip, J.; Rodrigues, J. A. Langmuir 2005, 21, 3296.
[30]
Huang, C. L.; Sun, Z. W.; Cui, M. M.; Liu, F.; Helms, B. A.; Russell, T. P. Adv. Mater. 2016, 28, 6612.
[31]
Li, Y. A.; Liu, X. B.; Zhang, Z.; Zhao, S. J.; Tian, G. F.; Zheng, J. K.; Wang, D.; Shi, S. W.; Russell, T. P. Angew. Chem., Int. Ed. 2018, 57, 13560.
[32]
Zou, S.; Wang, C.; Wei, Z.; Liu, H.; Tong, Z. Acta Chim. Sinica 2012, 70, 133. (in Chinese)
[32]
(邹声文, 王朝阳, 魏增江, 刘浩, 童真, 化学学报, 2012, 70, 133.)
[33]
Vignati, E.; Piazza, R. Langmuir 2003, 19, 6650.
Outlines

/