Article

Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials

  • Wenchao Bi ,
  • Linfeng Zhang ,
  • Jian Chen ,
  • Ruixue Tian ,
  • Hao Huang ,
  • Man Yao
Expand
  • Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024

Received date: 2021-12-09

  Online published: 2022-03-29

Supported by

Innovation Team Support Plan in Key Areas of Dalian City(2019RT15)

Abstract

Transition metal phosphides are promising anode materials for lithium ion batteries (LIBS) because of their low potential and high specific capacity. Among them, ZnP2 is a dual active anode material, and both Zn and P can react with Li, which is more competitive in capacity. However, the lithiation mechanism and the reaction products of ZnP2 are still unclear. In this work, the electronic and electrochemical properties of ZnP2 were studied by first-principle calculations and electrochemical measurement. The combination of theoretical calculations and experimental tests demonstrated the lithiation mechanism of ZnP2. Firstly, density functional theory (DFT) calculations revealed the lithiation reaction products, lithium diffusion path, diffusion barrier and theoretical lithium storage capacity (1477 mAh/g) of ZnP2. The calculation of the binding energy proved that the formation energies of LiZn and Li3P were thermodynamically lower than that of LinZnP2. The charge density difference analysis showed that the Zn—P bonds and P—P bonds were gradually broken during the Li+ insertion process, which was accompanied by the formation of Li—P bonds and Li—Zn bonds, and these all confirmed the conversion reaction occurred after Li+ was inserted into ZnP2. The calculation result of the density of states proved that ZnP2 changed from a semiconductor to a conductor with the insertion of Li+. The diffusion energy barrier was higher than that of general layered materials, which will reduce the rate performance of LIBs. Secondly, ZnP2 nanosheets were synthesized by the direct current (DC) arc plasma and solid phase sintering method. The electrochemical test showed that the rate performance and cycle performance were slightly worse, which proved the correctness of the diffusion barrier results. The discharge curve showed that the discharge capacity of the first cycle is similar to the theoretical calculation result, which is 1439 mAh/g. Finally, the components of the discharge products detected by the thin film X-ray diffraction (XRD) were LiZn and Li3P, which were consistent with the DFT calculation results.

Cite this article

Wenchao Bi , Linfeng Zhang , Jian Chen , Ruixue Tian , Hao Huang , Man Yao . Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials[J]. Acta Chimica Sinica, 2022 , 80(6) : 756 -764 . DOI: 10.6023/A21120552

References

[1]
Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013.
[2]
Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167.
[3]
Lu, L.; Han, X.; Li, J.; Ouyang, M. J. Power Sources 2013, 226, 272.
[4]
Qiu, K.; Yan, M. X.; Zhao, S. W.; An, S. L.; Wang, W.; Jia, G. X. Acta Chim. Sinica 2021, 79, 1146. (in Chinese)
[4]
(邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.)
[5]
Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[6]
Zhou, X.; Liu, Q.; Jiang, C.; Ji, B.; Ji, X.; Tang, Y.; Cheng, H.-M. Angew. Chem., nt. Ed. 2019, 59, 3802.
[7]
Li, T. X.; Li, D. L.; Zhang, Q. B.; Gao, J. H.; Kong, X. Z.; Fan, X. Y.; Gou, L. Acta Chim. Sinica 2021, 79, 678. (in Chinese)
[7]
(李童心, 李东林, 张清波, 高建行, 孔祥泽, 樊小勇, 苟蕾, 化学学报, 2021, 79, 678.)
[8]
Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. Science 1995, 270, 590.
[9]
Zheng, S. Y.; Dong, F.; Pang, Y. P.; Han, P.; Yang, J. J. Inorg. Mater. 2020, 35, 1295. (in Chinese)
[9]
(郑时有, 董飞, 庞越鹏, 韩盼, 杨俊和, 无机材料学报, 2020, 35, 1295.)
[10]
Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Electrochem. Commun. 2011, 13, 346.
[11]
Wang, S. L.; Yang, G. R.; SalmanNasir, M.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys.-Chim. Sin. 2021, 37, 28. (in Chinese)
[11]
(王思岚, 杨国锐, SalmanNasir, Muhammad, 王筱珺, 王嘉楠, 延卫, 物理化学学报, 2021, 37, 28.)
[12]
Sun, J.; Zheng, G.; Lee, H.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Nano Lett. 2014, 14, 4573.
[13]
Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ji, H. R. Adv. Mater. 2013, 25, 3010.
[14]
Puziy, O.; Poddubnaya, A.; Martnez-Alonso, F.; Suarez-Garca; Tascon, J. M. D. Carbon 2002, 40, 1507.
[15]
Jing, B.; Xi, B.; Mao, H.; Lin, Y.; Ma, X.; Feng, J.; Xiong, S. Adv. Mater. 2018, 1802310.
[16]
Wu, C.; Kopold, P.; Aken, P. A. V.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1604015.
[17]
Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Fan, C. Y.; Xi, X. T.; Yang, X. Nanoscale 2019, 11, 1304.
[18]
Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602.
[19]
Pralong, V.; Souza, D.; Leung, K. T.; Nazar, L. F. Electrochem. Commun. 2002, 4, 516.
[20]
Hall, J. W.; Membreno, N.; Jing, W.; Celio, H.; Jones, R. A. J. Am. Chem. Soc. 2012, 134, 5532.
[21]
Kim, K. H.; Hong, S. H. Adv. Energy Mater. 2021, 11, 2003609.
[22]
Hayashi, A.; Inoue, A.; Tatsumisago, M. J. Power Sources 2009, 189, 669.
[23]
Kim, S. O.; Manthira, A. ACS Appl. Mater. Interfaces 2017, 9, 16221.
[24]
Chen, M.; Zhou, W.; Qi, M.; Yin, J.; Xia, X. J. Power Sources 2017, 342, 964.
[25]
Pfeiffer, H.; Tancret, F.; Brousse, T. Electrochim. Acta 2005, 50, 4763.
[26]
Lu, Y.; Wang, X.; Mai, Y.; Xiang, J.; Zhang, H.; Li, L.; Gu, C.; Tu, J.; Mao, S. X. J. Phys. Chem. C 2012, 116, 22217.
[27]
Liu, J.; Sun, W.; Ran, Y.; Zhou, S.; Zhang, L.; Wu, A.; Huang, H.; Yao, M. Appl. Surf. Sci. 2021, 550, 149247.
[28]
Li, W.; Li, H.; Lu, Z.; Gan, L.; Ke, L.; Zhai, T.; Zhou, H. Energy Environ. Sci. 2015, 8, 3629.
[29]
Hwang, H.; Kim, M. G.; Kim, Y.; Martin, S. W.; Cho, J. Energy Environ. Sci. J. Mater. Chem. 2007, 3161.
[30]
Park, C.; Sohn, H. Chem. Mater. 2008, 20, 6319.
[31]
Liu, J.; Wu, A.; Tian, R.; Camacho, R. P.; Zhou, S.; Huang, S.; Yao, M. Mater. Today Energy 2020, 18, 100545.
[32]
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.
[33]
Fleet, M. E.; White, J. C. J. Mater. Res. 1986, 1, 187.
[34]
Tian, R.; Liu, C.; Zhang, G.; Wu, A.; Yao, M.; Huang, H. Appl. Surf. Sci. 2021, 553, 149448.
[35]
Manju, M. S.; Thomas, S.; Lee, S. U.; Madam, A. K. Appl. Surf. Sci. 2020, 541, 148417.
[36]
Butler, K.; Gautam, G. S.; Canepa, P. NPJ Comput Mater. 2019, 5, 19.
[37]
Zhang, Z. F.; Yu, Q. Y.; Wu, L.; Sun, L. J.; Peng, J. H. J. Chongqing Univ. 2012, 35, 83. (in Chinese)
[37]
(张正富, 余秋雁, 伍林, 孙力军, 彭金辉, 重庆大学学报, 2012, 35, 83.)
[38]
Fleet, M. E.; Mowles, T. A. Acta Crystallogr. 1984, 40, 1778.
[39]
Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F. M.; Cakir, D. J. Mater. Chem. A 2018, 6, 2337.
[40]
Li, P. J.; Zhou, W. W.; Tang, Y. H.; Zhang, H.; Shi, S. Q. Acta Phys. Sin. 2010, 6. (in Chinese)
[40]
(李沛娟, 周薇薇, 唐元昊, 张华, 施思齐, 物理学报, 2010, 6.)
[41]
Fan, C. L.; Cheng, X. L.; Zhang, H. Phys. Status Solidi 2010, 246, 77.
[42]
Henkelman, G.; Uberuaga, B. P. J. Phys. Chem. C 2000, 113, 9901.
[43]
Harper, A. F.; Evans, M. L.; Darby, J. P.; Bora, K.; Koer, C. P.; Nelson, J. R.; Morris, A. J. Johnson Matthey Technol. Rev. 2020, 64, 103.
[44]
Lin, C. J.; Zheng, F.; Zhu, Z. Z. Acta Phys. Sin. 2019, 68, 8. (in Chinese)
[44]
(林传金, 郑锋, 朱梓忠, 物理学报, 2019, 68, 8.)
[45]
Chen, H.; Hua, Y.; Luo, N.; He, X.; Li, Y.; Zhang, Y.; Chen, W.; Huang, S. J. Phys. Chem. C 2020, 124, 7031.
[46]
Zhao, S.; Kang, W.; Xue, J. J. Mater. Chem. A 2014, 2, 19046.
[47]
Hardikar, R. P.; Das, D.; Han, S. S.; Lee, K. R.; Singh, A. K. Phys. Chem. Chem. Phys. 2014, 16, 16502.
[48]
Zhang, W.; Liu, S.; Chen, J.; Hu, F.; Wang, X.; Huang, H.; Yao, M. ACS Appl. Mater. Interfaces 2021, 13, 22341.
[49]
Fang, Y.; Zhang, Y.; Miao, C.; Zhu, K.; Chen, Y.; Du, F.; Yin, J.; Ye, K.; Cheng, K.; Yan, J.; Wang, G.; Cao, D. Nano-micro. Lett. 2020, 12, 128.
[50]
Du, F.; Jin, X.; Chen, J.; Hua, Y.; Cao, M.; Zhang, L.; Li, J.; Zhang, L.; Jin, J.; Wu, C. J. Nanopart. Res. 2014, 16, 1.
[51]
Kim, Y. U.; Lee, C. K.; Kang, T. J. Electrochem. Soc. 2004, 151, A933.
[52]
Berland, K.; Hyldgaard, P. Phys. Rev. B 2014, 89, 035412.
[53]
Kresse, G. G.; Furthmüller, J. J. Phys. Rev. B 1996, 54, 11169.
[54]
Chl, P. Phys. Rev. B 1994, 50, 1795.
[55]
Paier, J.; Hirschl, R.; Marsman, M.; Georg, K. J. Phys. Chem. C 2005, 122, 234102.
[56]
Broderick, S. R.; Rajan, K. Europhys. Lett. 2011, 95, 57005.
[57]
Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272.
Outlines

/