Preparation of Bimetallic Conductive Metal-organic Framework Material Ni/Co-CAT for Electrocatalytic Oxygen Reduction
Received date: 2021-12-31
Online published: 2022-04-01
Supported by
National Natural Science Foundation of China(52170019); National Natural Science Foundation of China(51973015); Fundamental Research Funds for the Central Universities(06500100); Fundamental Research Funds for the Central Universities(FRF-TP-19-046AIZ)
Ni-catecholate and Ni-Co-catecholate (hereafter referred to as Ni-CAT and Ni-Co-CAT) were prepared by hydrothermal method using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) as the organic ligand and Ni and Co as the metal centers, respectively. After characterization, a microbial fuel cell (MFC) was constructed in a single chamber reactor device. Single chamber air cathode microbial fuel cell reactors offer the advantages of both small reactor size and no aeration. Ni-CAT and Ni-Co-CAT were mixed with carbon black in a 3∶1 mass ratio and applied to the cathode of MFC to catalyze the oxygen reduction reaction (ORR). The experiments included the preparation of M-CAT (M=Co or Ni), the preparation of air cathode and the assembly and operation of MFC. When preparing the catalytic layer of the air cathode, the conductive MOF and carbon black were mixed in a 3∶1 mass ratio to improve the catalytic effect. Furthermore, the air cathode was mixed with dispersant (isopropanol) and polytetrafluoroethylene (PTFE) to make it waterproof and breathable. The results showed that the MFC reactor catalyzed by Ni-Co-CAT had the best performance. This is due to the fact that bimetallic MOFs have stronger oxygen reduction activity compared to their monometallic counterparts. The MFC reactor catalyzed by Ni-Co-CAT had a maximum output voltage and power density of 310 mV and 190 mW/cm2, respectively, which were comparable to the performance of commercial Pt/C. The limiting current density of the MFC reactor catalyzed by Ni-Co-CAT was 2.84 mA/cm2, which was better than that of Ni-CAT (2.18 mA/cm2), indicating that the MFC power production efficiency was enhanced by the introduction of Co in the Ni-CAT structure. The main reason is that Ni-Co-CAT has a higher porosity and specific surface area when fully mixed with carbon black, and the metal sites M-O6 (M=Ni or Co) on its structure provide more catalytic activity, which gives Ni-Co-CAT an optimal electrochemical catalytic performance.
Yuanhao Geng , Xiaoqiu Lin , Yaxin Sun , Huiyu Li , Yue Qin , Congju Li . Preparation of Bimetallic Conductive Metal-organic Framework Material Ni/Co-CAT for Electrocatalytic Oxygen Reduction[J]. Acta Chimica Sinica, 2022 , 80(6) : 748 -755 . DOI: 10.6023/A21120617
[1] | Han, W.; Yan, X.; Jiang, Y.; Ping, M.; Deng, X.; Zhang, Y. J. Wuhan Univ. Technol., Mater. Sci. Ed. 2020, 35, 280. |
[2] | Chen, J.; Yang, J.; Jiang, L.; Wang, X.; Yang, D.; Wei, Q.; Wang, Y.; Wang, R.; Liu, Y.; Yang, Y. Bioresour. Technol. 2021, 337, 125430. |
[3] | Narayanasamy, S.; Jayaprakash, J. Fuel 2021, 301, 121016. |
[4] | Prathiba, S.; Kumar, P. S.; Vo, D. N. Chemosphere 2022, 286, 131856. |
[5] | Hoang, A. T.; Nizetic, S.; Ng, K. H.; Papadopoulos, A. M.; Le, A. T.; Kumar, S.; Hadiyanto, H.; Pham, V. V. Chemosphere 2022, 287, 132285. |
[6] | Dwivedi, K. A.; Huang, S. J.; Wang, C. T. Chemosphere 2022, 287, 132248. |
[7] | Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K. H. Chemosphere 2021, 281, 130828. |
[8] | Ramya, M.; Senthil Kumar, P. Chemosphere 2022, 288, 132512. |
[9] | Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Chem 2019, 5, 1486. |
[10] | Iannaci, A.; Ingle, S.; Dominguez, C.; Longhi, M.; Merdrignac-Conanec, O.; Ababou-Girard, S.; Barriere, F.; Colavita, P. E. Bioelectrochemistry 2021, 142, 107937. |
[11] | Chaturvedi, A.; Kundu, P. P. J. Environ. Chem. Eng. 2021, 9, 105662. |
[12] | Sun, M.; Zhai, L.; Li, W.; Yu, H. Chem. Soc. Rev. 2016, 45, 2847. |
[13] | Liu, X.; Li, W.; Yu, H. Chem. Soc. Rev. 2014, 43, 7718. |
[14] | Khandaker, S.; Das, S.; Hossain, M. T.; Islam, A.; Miah, M. R.; Awual, M. R. J. Mol. Liq. 2021, 344, 117795. |
[15] | Li, H.; Zhang, X.; Liu, Y.; Wang, J.; Lin, X.; Li, C. Energy Technol. 2021, 9, 2100402. |
[16] | Li, H.; Zhang, X.; Qin, Y.; Liu, Y.; Wang, J.; Peng, L.; Li, C. J. Power Sources 2021, 512, 230522. |
[17] | Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Acta Chim. Sinica 2021, 79, 139. (in Chinese) |
[17] | (常智, 乔宇, 杨慧军, 邓瀚, 朱星宇, 何平, 周豪慎, 化学学报, 2021, 79, 139.) |
[18] | Guo, L.; Sun, J.; Wei, J.; Liu, Y.; Hou, L.; Yuan, C. Carbon Energy 2020, 2, 203. |
[19] | Li, C.; Zhang, L.; Chen, J.; Li, X.; Sun, J.; Zhu, J.; Wang, X.; Fu, Y. Nanoscale 2021, 13, 485. |
[20] | Zhuang, Z.; Liu, D. Nano-micro Lett. 2020, 12, 132. |
[21] | Deng, X.; Hu, J.; Luo, J.; Liao, W.; He, J. Top. Curr. Chem. 2020, 378, 27. |
[22] | Shi, Y.; Wu, Y.; Wang, S.; Zhao, Y.; Li, T.; Yang, X.; Zhang, T. J. Am. Chem. Soc. 2021, 143, 4017. |
[23] | Mei, P.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 1041. (in Chinese) |
[23] | (梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.) |
[24] | Sun, L.; Wang, H.; Yu, J.; Zhou, X. Acta Chim. Sinica 2020, 78, 888. (in Chinese) |
[24] | (孙炼, 王洪磊, 余金山, 周新贵, 化学学报, 2020, 78, 888.) |
[25] | Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys. -Chim. Sin. 2020, 2010025. |
[26] | Shi, X.; Shan, Y.; Du, M.; Pang, H. Coord. Chem. Rev. 2021, 444, 214060. |
[27] | Guo, L. M.S. Thesisn, University of Ji’nan, Ji’nan, 2020. (in Chinese) |
[27] | (郭灵芝, 硕士论文, 济南大学, 济南, 2020.) |
[28] | Hmadeh, M.; Zheng, L.; Zheng, L.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. Chem. Mater. 2012, 24, 3511. |
[29] | Yoon, H.; Lee, S.; Oh, S.; Park, H.; Choi, S.; Oh, M. Small 2019, 15, 1805232. |
[30] | Duan, J.; Chen, S.; Zhao, C. Nat. Commun. 2017, 8, 15341. |
[31] | Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2015, 137, 118. |
[32] | Zhong, G.; Wang, H.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943. (in Chinese) |
[32] | (钟国玉, 王红娟, 余皓, 彭峰, 化学学报, 2017, 75, 943.) |
[33] | Liu, X.; Hu, W.; Jiang, W.; Yang, Y.; Niu, S.; Sun, B.; Wu, J.; Hu, J. ACS Appl. Mater. Interfaces 2017, 9, 28473. |
[34] | Liu, X.; Zhuo, M.; Zhang, W.; Gao, M.; Liu, X.; Sun, B.; Wu, J. Ultrason. Sonochem. 2020, 67, 105179. |
[35] | Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese) |
[35] | (张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.) |
[36] | Zhang, X.; Liu, Y.; Zheng, L.; Zhang, Q.; Li, C. Biochem. Eng. J. 2021, 173, 108095. |
/
〈 |
|
〉 |