Theoretical Studies on the Interaction of Uranyl with Carboxylic Acids and Oxime Ligands
Received date: 2022-01-28
Online published: 2022-04-01
Supported by
National Science Fund for Distinguished Young Scholars(21925603); National Natural Science Foundation of China(U2067212)
Uranium is the main raw material for nuclear reactor fuel. However, uranium resources on land are limited. According to the statistic, the total amount of proven about uranium ore in the world is about 7.64×106 t. The uranium reserves in seawater are about 4.5×109 t, which is abundant in seawater. It is expected to alleviate the shortage of uranium resources on land by extraction of uranium from seawater. An in-depth understanding of the complexation behavior of various functional groups with uranyl ions is helpful for the design and development of high-efficient seawater uranium adsorbents. Pyridine-2,6-dicarboxylic acid group (H2DPA) and glutarimidedioxime group (H2A) are two typical uranyl extractants with the same coordination pattern. In the present work, we have systematically studied the uranyl extraction complexes with these two ligands and carbonate ions by quasi-relativistic density functional theory (DFT) methods. The structures, bonding properties and thermodynamic stability of the 1∶1 (metal/ligand molar ratio) and 1∶2 type extraction complexes were investigated at the B3LYP/6-311G(d, p)/SDD level of theory. The results show that the covalent interaction strength between uranyl cations and these two ligands are different in the 1∶1 and 1∶2 type complexes. H2DPA has a stronger coordination ability with uranyl in the 1∶1 type of complexes, while in the 1∶2 type complexes H2A has a stronger coordination ability. For each complex, the covalent interaction between oxygen atom and uranyl ions is stronger than that of nitrogen atom. Due to the high proton rearrangement energy and dissociation energy of the H2A ligand, the H2DPA ligand is more likely to react with [UO2(CO3)3]4-. Therefore, the H2DPA ligand is a potential effective ligand for uranium extraction from seawater. In addition, the presence of Ca2+ in seawater inhibits the complexation of uranyl cations and these ligands. The results of this work provide the theoretical clue for the design and development of highly effective adsorption groups in uranium extraction from seawater.
Xuefei Luan , Congzhi Wang , Liangshu Xia , Weiqun Shi . Theoretical Studies on the Interaction of Uranyl with Carboxylic Acids and Oxime Ligands[J]. Acta Chimica Sinica, 2022 , 80(6) : 708 -713 . DOI: 10.6023/A22010054
| [1] | Li, H.; Wen, J.; Wang, X.-L. Chinese Sci. Bull. 2018, 63, 481. (in Chinese) |
| [1] | (李昊, 文君, 汪小琳, 科学通报, 2018, 63, 481.) |
| [2] | Hu, B.; Wang, H.; Liu, R.; Qiu, M. Chemosphere 2021, 274, 129743. |
| [3] | Endrizzi, F.; Leggett, C. J.; Rao, L. Ind. Eng. Chem. Res. 2016, 55, 4249. |
| [4] | Parker, B. F.; Hohloch, S.; Pankhurst, J. R.; Zhang, Z.; Love, J. B.; Arnold, J.; Rao, L. Dalton Trans. 2018, 47, 5695. |
| [5] | Yuan, Y. H.; Niu, B. Y.; Yu, Q. H.; Guo, X.; Guo, Z. H.; Wen, J.; Liu, T.; Zhang, H. Q.; Wang, N. Angew. Chem.-Int. Ed. 2020, 59, 1220. |
| [6] | Tian, G.; Geng, J. X.; Jin, Y. D.; Wang, C. L.; Li, S. Q.; Chen, Z.; Wang, H.; Zhao, Y. S.; Li, S. J. J. Hazard. Mater. 2011, 190, 442. |
| [7] | Zhu, J. H.; Liu, Q.; Li, Z. S.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. J. Hazard. Mater. 2018, 353, 9. |
| [8] | Wang, C. Z.; Lan, J. H.; Wu, Q. Y.; Luo, Q.; Zhao, Y. L.; Wang, X. K.; Chai, Z. F.; Shi, W. Q. Inorg. Chem. 2014, 53, 9466. |
| [9] | Li, Z.-N.; Sha, H.-Y.; Yang, N.; Yuan, Y.; Zhu, G.-S. Acta Chim. Sinica 2019, 77, 469. (in Chinese) |
| [9] | (李樟楠, 沙浩岩, 杨南, 元野, 朱广山, 化学学报, 2019, 77, 469.) |
| [10] | Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Chem. Rev. 2017, 117, 13935. |
| [11] | Parker, B. F.; Zhang, Z.; Rao, L.; Arnold, J. Dalton Trans. 2018, 47, 639. |
| [12] | Liu, Z.-Y.; Xie, Y.; Wang, Y.-F.; Hu, T.-Y.; Ye, G.; Chen, J. J. Tsinghua Univ. (Sci. & Technol.) 2021, 61, 279. (in Chinese) |
| [12] | (刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖, 清华大学学报(自然科学版), 2021, 61, 279.) |
| [13] | Tang, N.; Liang, J.; Niu, C. G.; Wang, H.; Luo, Y.; Xing, W. L.; Ye, S. J.; Liang, C.; Guo, H.; Guo, J. Y.; Zhang, Y. F.; Zeng, G. M. J. Mater. Chem. A 2020, 8, 7588. |
| [14] | Sun, Q.; Aguila, B.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Thallapally, P. K.; Ma, S. Adv. Mater. 2018, 30, e1705479. |
| [15] | Zhang, L.; Pu, N.; Yu, B.; Ye, G.; Chen, J.; Xu, S.; Ma, S. ACS Appl. Mater. Interfaces 2020, 12, 3688. |
| [16] | Xu, X.; Xu, L.; Ao, J.; Liang, Y.; Li, C.; Wang, Y.; Huang, C.; Ye, F.; Li, Q.; Guo, X.; Li, J.; Wang, H.; Ma, S.; Ma, H. J. Mater. Chem. A 2020, 8, 22032. |
| [17] | Tian, G. X.; Teat, S. J.; Zhang, Z. Y.; Rao, L. F. Dalton Trans. 2012, 41, 11579. |
| [18] | Xu, C.; Tian, G.; Teat, S. J.; Rao, L. Inorg. Chem. 2013, 52, 2750. |
| [19] | Zhou, D.; Huang, C.; Wang, K.; Xu, G. Polyhedron 1994, 13, 987. |
| [20] | Guo, X.; Huang, L.; Li, C.; Hu, J.; Wu, G.; Huai, P. Phys. Chem. Chem. Phys. 2015, 17, 14662. |
| [21] | Murray, J. S.; Politzer, P. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2011, 1, 153. |
| [22] | Pyykkö, P.; Li, J.; Runeberg, N. J. Phys. Chem. 1994, 98, 4809. |
| [23] | Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. |
| [24] | Moellmann, J.; Grimme, S. J. Phys. Chem. C 2014, 118, 7615. |
| [25] | Wiberg, K. B. J. Am. Chem. Soc. 1968, 90, 59. |
| [26] | Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. |
| [27] | Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1. |
| [28] | Sun, X. Q.; Xu, C.; Tian, G. X.; Rao, L. F. Dalton Trans. 2013, 42, 14621. |
| [29] | Tian, G.; Teat, S. J.; Rao, L. Dalton Trans. 2013, 42, 5690. |
| [30] | Bernhard, G.; Geipel, G.; Reich, T.; Brendler, V.; Amayri, S.; Nitsche, H. Radiochim. Acta 2001, 89, 511. |
| [31] | Kelly, S. D.; Kemner, K. M.; Brooks, S. C. Geochim. Cosmochim. Acta 2007, 71, 821. |
| [32] | Becke, A. D. J. Chem. Phys. 1993, 98, 5648. |
| [33] | Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. |
| [34] | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 1, Revision B. 01,Gaussian Inc., Wallingford, CT, 2016. |
| [35] | Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. |
| [36] | Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866. |
| [37] | Yang, C.; Pei, S.; Chen, B.; Ye, L.; Yu, H.; Hu, S. Dalton Trans. 2016, 45, 3120. |
| [38] | Guo, X.; Xiong, X.-G.; Li, C.; Gong, H.; Huai, P.; Hu, J.; Jin, C.; Huang, L.; Wu, G. Inorg. Chim. Acta 2016, 441, 117. |
| [39] | Luan, X.-F.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Xia, L.-S.; Shi, W.-Q. J. Phys. Chem. A 2022, 126, 406. |
| [40] | Baldridge, K.; Klamt, A. J. Chem. Phys. 1997, 106, 6622. |
| [41] | Andzelm, J.; Kolmel, C.; Klamt, A. J. Chem. Phys. 1995, 103, 9312. |
| [42] | Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. |
| [43] | Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. |
| [44] | Schreckenbach, G.; Shamov, G. A. Acc. Chem. Res. 2010, 43, 19. |
| [45] | Shamov, G. A.; Schreckenbach, G. J. Phys. Chem. A 2005, 109, 10961. |
| [46] | Camaioni, D. M.; Schwerdtfeger, C. A. J. Phys. Chem. A 2005, 109, 10795. |
| [47] | te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. |
| [48] | Guerra, C. F.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391. |
| [49] | Vanlenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597. |
| [50] | Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. |
| [51] | Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. |
/
| 〈 |
|
〉 |