Article

Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field

  • Luocong Wang ,
  • Zhewei Li ,
  • Caiwei Yue ,
  • Peihuan Zhang ,
  • Ming Lei ,
  • Min Pu
Expand
  • State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
; Tel.: 010-64446598

Received date: 2022-01-30

  Online published: 2022-04-06

Supported by

National Natural Science Foundation of China(22073005)

Abstract

In this paper, the trans-cis isomerization mechanism of azobenzene derivative 2'-p-tolyldiazenyl-1,1':4,4'- terphenyl-4,4''-dicarboxylic acid (TTDA) under different electric field intensity was calculated and studied by symmetry destruction density functional theory (DFT). There are three possible isomerization modes of TTDA through C—N1=N2 angle trans-cis isomerization (N2 connected to large substituents and N1 connected to small substituents in azo groups), inversion around N1 or N2 atoms and rotation around N1=N2 bonds. The calculation results show that the electric field can significantly reduce the energy barrier of isomerization reaction. After adding the electric field, the electrons in trans-TTDA molecule have obvious transfer, the π orbit is polarized, and the energy level difference of HOMO (highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular orbital) is significantly reduced, which also shows that the trans configuration of TTDA molecule is easier to convert to cis configuration. When the forward electric field along the z axis is added (taking the C1→C2 direction as the positive direction of the z axis), the rotation path is the optimal path. The rotation isomerization pathway around the N=N bond owns a lower free energy barrier compared to the inversion pathways. The steric effect is more important than the electrostatic effect for the isomerization of TTDA under the electric field along the C1→C2 direction. In addition, we also studied adding an electric field along the N=N bond (taking the N2→N1 direction as the positive direction of the z axis). When the electric field intensity is 0.00 V•Å-1, the inversion barrier of N1 is higher than that of N2. When –0.62 V•Å-1Fz≤0.93 V•Å-1, the rotation path is the dominant path. When –0.93 V•Å-1Fz≤–0.62 V•Å-1, N2 inversion path is the dominant path. When Fz≤–1.03 V•Å-1, the terphenyl of cis-TTDA along the N2→N1 direction is deformed. The molecular polarizability increases with the increase of electric field intensity. The electric field greatly promotes electron transfer in the isomerizaiton of TTDA as well as their electronic structures.

Cite this article

Luocong Wang , Zhewei Li , Caiwei Yue , Peihuan Zhang , Ming Lei , Min Pu . Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field[J]. Acta Chimica Sinica, 2022 , 80(6) : 781 -787 . DOI: 10.6023/A22010056

References

[1]
Helal, W.; Bories, B.; Evangelisti, S.; Leininger, T.; Maynau, D. Computational Science and Its Applications, Springer, Berlin, Heidelberg, 2006, pp. 744-751.
[2]
Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.
[3]
Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B. Science 2016, 352, 1443.
[4]
zhang, J. L.; zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T.; Chen, W. Chem. Soc. Rev. 2015, 44, 2998.
[5]
Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Guo, X. Science 2016, 352, 1443.
[6]
Atesci, H.; Kaliginedi, V.; Celis Gil, J. A.; Ozawa, H.; Thijssen, J. M.; Broekmann, P.; Haga, M.-A.; van der Molen, S. J. Nat. Nanotechnol. 2018, 13, 117.
[7]
Perrin, M. L.; Burzurí, E.; zant, H. Chem. Soc. Rev. 2015, 44, 902.
[8]
Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.
[9]
Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230.
[10]
Perrin, M. L.; Verzijl, C. J. O.; Martin, C. A.; Shaikh, A. J.; Eelkema, R.; van Esch, J. H.; van Ruitenbeek, J. M.; Thijssen, J. M.; van der zant, H. S. J.; Dulić, D. Nat. Nanotechnol. 2013, 8, 282.
[11]
Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Chem. 2015, 7, 215.
[12]
Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Nat. Nanotechnol. 2014, 9, 881.
[13]
Reddy, P.; Jang, S.-Y.; Segalman Rachel, A.; Majumdar, A. Science 2007, 315, 1568.
[14]
Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Phys. Rev. Lett. 2014, 112, 047403.
[15]
Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Phys. Rev. Lett. 2014, 112, 047403.
[16]
Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Science 2014, 344, 1135.
[17]
Natterer, F. D.; Yang, K.; Paul, W.; Willke, P.; Choi, T.; Greber, T.; Heinrich, A. J.; Lutz, C. P. Nature 2017, 543, 226.
[18]
Liu, Z.; Ren, S.; Guo, X. Molecular-Scale Electronics 2019, 173.
[19]
Yin, X.; Zang, Y.; Zhu, L.; Low, J. Z.; Liu, Z. F.; Cui, J.; Neaton, J. B.; Venkataraman, L.; Campos, L. M. Sci. Adv. 2017, 3, eaao2615.
[20]
Liu, X.; Qin, L.; Zhan, Y.; Chen, M.; Yu, Y. Acta Chim. Sinica 2020, 78, 478. (in Chinese)
[20]
(刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾, 化学学报, 2020, 78, 478.)
[21]
Wang, C.; Li, B.; Wang, C.; Wu, B. Acta Chim. Sinica 2022, 80, 101. (in Chinese)
[21]
(王冲, 李宝林, 王春儒, 吴波, 化学学报, 2022, 80, 101.)
[22]
Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica 2020, 78, 256. (in Chinese)
[22]
(翟亚丽, 许文娟, 孟祥茹, 侯红卫, 化学学报, 2020, 78, 256.)
[23]
Isac, D. L.; Airinei, A.; Homocianu, M.; Fifere, N.; Cojocaru, C.; Hulubei, C. J. Photoch. Photobio. A. 2020, 390, 112300.
[24]
Sun, J.; Wu, Q.; Weng, W.; Liu, X.; Tan, P.; Sun, L. Acta Chim. Sinica 2020, 78, 1082. (in Chinese)
[24]
(孙静静, 吴仇荣, 翁文强, 刘晓勤, 谈朋, 孙林兵, 化学学报, 2020, 78, 1082.)
[25]
Zang, Y.; Zou, Q.; Fu, T.; Ng, F.; Fowler, B.; Yang, J.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Nat. Commun. 2019, 10, 4482.
[26]
Huang, X.; Tang, C.; Li, J.; Chen, L.-C.; Zheng, J.; Zhang, P.; Le, J.; Li, R.; Li, X.; Liu, J.; Yang, Y.; Shi, J.; Chen, Z.; Bai, M.; Zhang, H.-L.; Xia, H.; Cheng, J.; Tian, Z.-Q.; Hong, W. Sci. Adv. 2019, 5, eaaw3072.
[27]
Dutta, B. J.; Bhattacharyya, P. K. Int. J. Quantum Chem. 2015, 115, 1459.
[28]
Shaik, S.; Ramanan, R.; Danovich, D.; Mandal, D. Chem. Soc. Rev. 2018, 47, 5125.
[29]
Avdic, I.; Kempfer-Robertson, E. M.; Thompson, L. M. J. Phys. Chem. A 2021, 125, 8238.
[30]
Yogitha, S. N.; Kumar, B.; Raghavendra; Imranpasha; Gupta, S. K. Mater. Sci. Eng. B 2021, 267, 115094.
[31]
Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K.-H.; Moresco, F.; Grill, L. J. Am. Chem. Soc. 2006, 128, 14446.
[32]
Lu, T.; Chen, Q. ChemPhysChem 2021, 22, 386.
[33]
Meng, L.; Xin, N.; Hu, C.; Wang, J.; Gui, B.; Shi, J.; Wang, C.; Shen, C.; Zhang, G.; Guo, H.; Meng, S.; Guo, X. Nat. Commun. 2019, 10, 1450.
[34]
Stark, J. Nature 1913, 92, 401.
[35]
Fried, S. D.; Boxer, S. G. Annu. Rev. Biochem. 2017, 86, 387.
[36]
Murgida, D. H.; Hildebrandt, P. Acc. Chem. Res. 2004, 37, 854.
[37]
Bruot, C.; Hihath, J.; Tao, N. Nat. Nanotechnol. 2012, 7, 35.
[38]
Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
[39]
Hratchian, H. P.; Schlegel, H. B. J. Chem. Phys. 2004, 120, 9918.
[40]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
[41]
Legault, C. Y. CYLview, 1.0b, Universite? de Sherbrooke, 2009, http://www.cylview.org.
[42]
Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33.
Outlines

/