Communication

Porous Bismuth Nanoflowers Enriched with Lattice Dislocations for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate

  • Yinlong Jiang ,
  • Guochao Li ,
  • Qingsong Chen ,
  • Zhongning Xu ,
  • Shanshan Lin ,
  • Guocong Guo
Expand
  • a College of Chemistry, Fuzhou University, Fuzhou 350116, China
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
; Tel.: 0591-83705882; Fax: 0591-83714946

Received date: 2022-01-06

  Online published: 2022-04-15

Supported by

National Key R&D Program of China(2017YFA0206802); National Key R&D Program of China(2017YFA0700103); National Natural Science Foundation of China(21203200); National Natural Science Foundation of China(91545201)

Abstract

The conversion of carbon dioxide has become a hot topic in the world today. Here, we adopt the strategy of in-situ electrochemical transformation to reduce layered bismuth oxide formate nanoflowers (BiOCOOH NFs) self-assembled with nanosheets synthesized by simple solvothermal method to porous bismuth nanoflowers (p-Bi NFs) with a large number of lattice dislocations. Specifically, 1.0 g Bi(NO3)3•5H2O was ultrasonically dissolved in 10 mL N,N-dimethylformamide (DMF), then 70 mL deionized water was added to the above solution, and the resulting solution was ultrasonicated for 10 min at room temperature to ensure that all reagents were uniformly dispersed. The resulting solution was then transferred to a 100 mL Teflon-lined stainless steel autoclave, kept at 120 ℃ for 20 h, and then naturally cooled to room temperature. The results show that the minimum overpotential of the electrochemical reduction of carbon dioxide to formate is 436 mV. When the catalyst loading is 0.5 mg/cm2, the partial current density of formate (jformate) is as high as 24.4 mA•cm-2, which is 5.5 times that of commercial bismuth (Commercial Bi); and the Faraday efficiency (FEformate) of formate is 96.7% at –1.8 V versus saturated calomel electrode (vs. SCE). The FEformate is over 90% in a wide potential window of over 500 mV. Moreover, the p-Bi NFs electrocatalyst is stable in formate production for more than 10 h in CO2-saturated 0.5 mol•L-1 KHCO3 electrolyte. Compared with the normalized electrochemical surface area (ECSA), it was found that the jformate of p-Bi NFs was still about 4.5 times higher than that of Commercial Bi. The high catalytic performance of the catalyst can be attributed to the unique micro/nano hybrid structure derived from the lattice collapse and reconstruction of precursors, resulting in porous and rough surface and containing high density of active sites with lattice dislocations and defects. This study provides new insights into designing and synthesizing electrocatalysts with high performance for carbon dioxide reduction to formate.

Cite this article

Yinlong Jiang , Guochao Li , Qingsong Chen , Zhongning Xu , Shanshan Lin , Guocong Guo . Porous Bismuth Nanoflowers Enriched with Lattice Dislocations for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate[J]. Acta Chimica Sinica, 2022 , 80(6) : 703 -707 . DOI: 10.6023/A22010012

References

[1]
Wang, X. S.; Yang, X.; Chen, C. H.; Li, H. F.; Huang, Y. B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
[1]
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
[2]
Chen, Q.; Kuang, Q.; Xie, Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
[2]
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
[3]
Qin, Z. Z.; Wu, J.; Li, B.; Su, T. M.; Ji, H. B. Acta Phys. -Chim. Sin. 2021, 37, 2005027.
[4]
Mu, C. H.; Zhang, Y. X.; Kou, W.; Xu, L. B. Acta Chim. Sinica 2021, 79, 925. (in Chinese)
[4]
(穆春辉, 张艺馨, 寇伟, 徐联宾, 化学学报, 2021, 79, 925.)
[5]
Song, B.; Qin, A. J.; Tang, B. Z. Acta Chim. Sinica 2020, 78, 9. (in Chinese)
[5]
(宋波, 秦安军, 唐本忠, 化学学报, 2020, 78, 9.)
[6]
Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem. Rev. 2017, 3, 560.
[7]
Du, D.; Lan, R.; Humphreys, J.; Tao, S. J. Appl. Electrochem. 2017, 47, 661.
[8]
Komatsu, S.; Yanagihara, T.; Hiraga, Y.; Tanaka, M.; Kunugi, A. Denki Kagaku 1995, 63, 217.
[9]
Wen, G. B.; Lee, D. U.; Ren, B. H.; Hassan, F. M.; Jiang, G. P.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Adv. Energy Mater. 2018, 8, 1802427.
[10]
Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Angew. Chem. Int. Ed. 2019, 58, 14197.
[11]
Lamagni, P.; Miola, M.; Catalano, J.; Hvid, M. S.; Mamakhel, M. A. H.; Christensen, M.; Madsen, M. R.; Jeppesen, H. S.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T.; Lock, N. Adv. Funct. Mater. 2020, 30, 1910408.
[12]
Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Energy Environ. Sci. 2019, 12, 1334.
[13]
Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J.; Feng, Z. X.; Li, Y. F.; Zhou, W.; Li, Y. G. Nat. Commun. 2019, 10, 2807.
[14]
Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. ACS Catal. 2020, 10, 358.
[15]
Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536.
[16]
Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J.; Jin, Z. Nano Energy 2018, 53, 808.
[17]
Peng, C. J.; Zeng, G.; Ma, D. D.; Cao, C. S.; Zhou, S. H.; Wu, X. T.; Zhu, Q. L. ACS Appl. Mater. Interfaces 2021, 13, 20589.
[18]
He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Small 2021, 18, 2105246.
[19]
Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Nat. Commun. 2018, 9, 1320.
[20]
Liu, J. Z.; Li, Y. H.; Wang, Y. T.; Xiao, C. Q.; Liu, M. M.; Zhou, X. D.; Jiang, H.; Li, C. Z. Nano Res. 2022, 15, 1409.
[21]
Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. ACS Catal. 2017, 7, 5071.
[22]
Fan, M. Y.; Prabhudev, S.; Garbarino, S.; Qiao, J. L.; Botton, G. A.; Harrington, D. A.; Tavares, A. C.; Guay, D. Appl. Catal. B 2020, 274, 119031.
[23]
Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y.; Mavrikakis, M.; Xu, W. L. Nat. Commun. 2020, 11, 2352.
[24]
Liu, P.; Liu, H. L.; Zhang, S.; Wang, J.; Wang, C. J. Colloid Interface Sci. 2021, 602, 740.
[25]
Duan, F.; Zheng, Y.; Liu, L. A.; Chen, M. Q.; Xie, Y. Mater. Lett. 2010, 64, 1566.
[26]
Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Adv. Energy Mater. 2020, 10, 2001709.
[27]
Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60, 18178.
[28]
Ma, W. X.; Bu, J.; Liu, Z. P.; Yan, C.; Yao, Y.; Chang, N. H.; Zhang, H. P.; Wang, T.; Zhang, J. Adv. Funct. Mater. 2020, 31, 2006704.
[29]
Yang, Q.; Wu, Q. L.; Liu, Y.; Luo, S. P.; Wu, X. T.; Zhao, X. X.; Zou, H. Y.; Long, B. H.; Chen, W.; Liao, Y. J.; Li, L. X.; Shen, P. K.; Duan, L. L.; Quan, Z. W. Adv. Mater. 2020, 32, 2002822.
[30]
Zhao, X. H.; Chen, Q. S.; Zhuo, D. H.; Lu, J.; Xu, Z. N.; Wang, C. M.; Tang, J. X.; Sun, S. G.; Guo, G. C. Electrochim. Acta 2021, 367, 137478.
[31]
Zhuo, D. H.; Chen, Q. S.; Zhao, X. H.; Jiang, Y. L.; Lu, J.; Xu, Z. N.; Guo, G. C. J. Mater. Chem. C 2021, 9, 7900.
Outlines

/