Article

Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks

  • Jamshid Kadirkhanov ,
  • Feng Zhong ,
  • Wenjian Zhang ,
  • Chunyan Hong
Expand
  • a Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026
    b School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601
    c Institute of Physical Science and Information Technology, Anhui University, Hefei 230601

Received date: 2022-03-23

  Online published: 2022-04-27

Supported by

National Natural Science Foundation of China(22131010); National Natural Science Foundation of China(52021002); Anhui University Scientific Research Start-up Fund(Y040418176)

Abstract

The morphology of polymeric nano-objects has an important influence on its properties, among which vesicles (especially multi-chambered vesicles) have attracted much attention due to their hollow structures. Polymerization-induced self-assembly (PISA) is an efficient method for preparing polymeric nano-objects. However, there are relatively few reports on the efficient preparation of multi-chambered vesicles by PISA. In this paper, multi-chambered vesicles were successfully prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly using styrene (St) as monomer, ethanol/water (7/3, mass ratio) as the solvent and polyethylene glycol (PEG45-PETTC) as macro RAFT reagent. At the same time, RAFT copolymerization-induced self-assembly of St and oligoethylene glycol methyl ether methacrylate monomers (OEGMA) were carried out to explore the effect of introducing solvophilic moiety OEGMA into the core-forming blocks on the morphology of the resulting nano-objects. Due to the strong chain rigidity of polystyrene, the introduction of a solvophilic segment into the polystyrene segment to increase the flexibility of the core-forming blocks is a reported method to promote morphology evolution. However, in the polymerization-induced self-assembly system of St and OEGMA in ethanol/water (7/3, mass ratio), the introduction of solvophilic moieties (OEGMA) resulted in the morphology degradation of the resulting nano-objects. With the increase of solvophilic moieties in the core-forming blocks, the resulting nano-objects gradually transformed from multi-chambered vesicles to unicellular vesicles and spherical micelles. Random copolymer P(St-co-OEGMA) of the core-forming blocks in the corresponding nano-objects were formed by RAFT copolymerization of St and OEGMA. The solvated degree of the core-forming blocks increased due to the introduction of solvophilic OEGMA moieties. Moreover, the large side groups may also increase the free volume of core-forming blocks. The increasing of the free volume and solvated degree of the core-forming blocks synergistically weakened the packing strength of the core-forming blocks, leading to adversely effects on morphology transition of the nano-objects. We believe that the results of this study is a good complement to the current polymerization-induced self-assembly system.

Cite this article

Jamshid Kadirkhanov , Feng Zhong , Wenjian Zhang , Chunyan Hong . Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks[J]. Acta Chimica Sinica, 2022 , 80(7) : 913 -920 . DOI: 10.6023/A22030128

References

[1]
Hu, X. L.; Zhang, Y. G.; Xie, Z. G.; Jing, X. B.; Bellotti, A.; Gu, Z. Biomacromolecules 2017, 18, 649.
[2]
Blackman, L. D.; Varlas, S.; Arno, M. C.; Houston, Z. H.; Fletcher, N. L.; Thurecht, K. J.; Hasan, M.; Gibson, M. I.; O'Reilly, R. K. ACS Central Sci. 2018, 4, 718.
[3]
Zhang, W. J.; Hong, C. Y.; Pan, C. Y. J. Mater. Chem. A 2014, 2, 7819.
[4]
Zhao, X.; Chen, M.; Zhang, W. G.; Wang, C. H.; Wang, F.; You, Y. Z.; Zhang, W. J.; Hong, C. Y. Macromol. Rapid Commun. 2020, 41, 2000260.
[5]
Chang, J.; Zhang, W. J.; Hong, C. Y. Chin. J. Chem. 2017, 35, 1016.
[6]
Zeng, M.; Zhou, S.; Sui, X. F.; Yuan, J. Y. Chin. J. Chem. 2021, 39, 3448.
[7]
He, J.; Cao, J. P.; Chen, Y.; Zhang, L.; Tan, J. B. ACS Macro Lett. 2020, 9, 533.
[8]
Luckerath, T.; Koynov, K.; Loescher, S.; Whitfield, C. J.; Nuhn, L.; Walther, A.; Barner-Kowollik, C.; Ng, D. Y. W.; Weil, T. Angew. Chem.-Int. Ed. 2020, 59, 15474.
[9]
Shi, P.; Gao, C.; He, X.; Sun, P.; Zhang, W. Macromolecules 2015, 48, 1380.
[10]
Tan, J. B.; Liu, D. D.; Huang, C. D.; Li, X. L.; He, J.; Xu, Q.; Zhang, L. Macromol. Rapid Commun. 2017, 38, 1700195.
[11]
Li, J. W.; Chen, M.; Zhang, Z.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polym. Chem. 2022, 13, 402.
[12]
Huo, M.; Du, H. T.; Zeng, M.; Pan, L.; Fang, T.; Xie, X. M.; Wei, Y.; Yuan, J. Y. Polym. Chem. 2017, 8, 2833.
[13]
Li, J. Y.; Qiu, L.; Xu, X. F.; Pan, C. Y.; Hong, C. Y.; Zhang, W. J. J. Mater. Chem. B 2018, 6, 1678.
[14]
Sun, X. L.; Liu, D. M.; Li, S. S.; Li, K. K.; Wan, W. M. Macromol. Rapid Commun. 2017, 38, 1700424.
[15]
D'Agosto, F.; Rieger, J.; Lansalot, M.. Angew. Chem.-Int. Ed. 2020, 59, 8368.
[16]
Khor, S. Y.; Quinn, J. F.; Whittaker, M. R.; Truong, N. P.; Davis, T. P. Macromol. Rapid Commun. 2019, 40, 1800438.
[17]
Yeow, J.; Boyer, C. Adv. Sci. 2017, 4, 1700137.
[18]
Zhang, Q. C.; Zeng, R. M.; Zhang, Y. X.; Chen, Y.; Zhang, L.; Tan, J. B. Macromolecules 2020, 53, 8982.
[19]
Zhang, W. J.; Kadirkhanov, J.; Wang, C. H.; Ding, S. G.; Hong, C. Y.; Wang, F.; You, Y. Z. Polym. Chem. 2020, 11, 3654.
[20]
Zhu, R. M.; Yang, C. L.; Chang, Z. X.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Chin. J. Chem. 2022, 40, 453.
[21]
Zhong, F.; Pan, C. Y. Macromol. Rapid Commun. 2021, 42, 2100566.
[22]
An, N. K.; Chen, X.; Yuan, J. Y. Polym. Chem. 2021, 12, 3220.
[23]
Shi, B. Y.; Wang, G. W. Acta Polym. Sin. 2022, 53, 15. (in Chinese)
[23]
(史柏扬, 王国伟, 高分子学报, 2022, 53, 15.)
[24]
Cao, J. P.; Tan, Y. X.; Chen, Y.; Zhang, L.; Tan, J. B. Macromol. Rapid Commun. 2021, 42, 2100498.
[25]
Jiang, J. H.; Zhu, Y. Q.; Du, J. Z. Acta Chim. Sinica 2020, 78, 719. (in Chinese)
[25]
(江金辉, 朱云卿, 杜建忠, 化学学报, 2020, 78, 719.)
[26]
Li, S. Z.; Han, G.; Zhang, W. Q. Polym. Chem. 2020, 11, 4681.
[27]
Huang, J.; Guo, Y. K.; Gu, S.; Han, G.; Duan, W. F.; Gao, C. Q.; Zhang, W. Q. Polym. Chem. 2019, 10, 3426.
[28]
Gao, C. Q.; Zhou, H.; Qu, Y. Q.; Wang, W.; Khan, H.; Zhang, W. Q. Macromolecules 2016, 49, 3789.
[29]
Cheng, G.; Perez-Mercader, J. Macromol. Rapid Commun. 2019, 40, 1800513.
[30]
Wang, X.; An, Z. S. Macromol. Rapid Commun. 2019, 40, 1800325.
[31]
Wang, X.; Shen, L. L.; An, Z. S. Prog. Polym. Sci. 2018, 83, 1.
[32]
Chen, S. L.; Shi, P. F.; Zhang, W. Q. Chinese J. Polym. Sci. 2017, 35, 455.
[33]
Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Angew. Chem.-Int. Ed. 2017, 56, 16541.
[34]
Sun, Y. J.; Cheng, X. X.; Miao, T. F.; Ma, H. T.; Zhang, W.; Zhu, X. L. Chinese J. Polym. Sci. 2022, 40, 56.
[35]
Cheng, X. X.; Miao, T. F.; Ma, Y. F.; Zhu, X. Y.; Zhang, W.; Zhu, X. L. Angew. Chem.-Int. Ed. 2021, 60, 24430.
[36]
Delaittre, G.; Dire, C.; Rieger, J.; Putaux, J. L.; Charleux, B. Chem. Commun. 2009, 2887.
[37]
Charleux, B.; Delaittre, G.; Rieger, J.; D'Agosto, F. Macromolecules 2012, 45, 6753.
[38]
Darabi, A.; Shirin-Abadi, A. R.; Jessop, P. G.; Cunningham, M. F. Macromolecules 2015, 48, 72.
[39]
Darabi, A.; Shirin-Abadi, A. R.; Pinaud, J.; Jessop, P. G.; Cunningham, M. F. Polym. Chem. 2014, 5, 6163.
[40]
Wan, W. M.; Pan, C. Y. Macromolecules 2007, 40, 8897.
[41]
Wang, J.; Wu, Z. G.; Wang, G. W.; Matyjaszewski, K. Macromol. Rapid Commun. 2019, 40, 1800332.
[42]
Alzahrani, A.; Zhou, D. W.; Kuchel, R. P.; Zetterlund, P. B.; Aldabbagh, F. Polym. Chem. 2019, 10, 2658.
[43]
Zaquen, N.; Yeow, J.; Junkers, T.; Boyer, C.; Zetterlund, P. B. Macromolecules 2018, 51, 5165.
[44]
Wang, L.; Ding, Y.; Liu, Q. Z.; Zhao, Q. Q.; Dai, X. C.; Lu, X. H.; Cai, Y. L. ACS Macro Lett. 2019, 8, 623.
[45]
Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Angew. Chem.-Int. Ed. 2018, 57, 1053.
[46]
Kadirkhanov, J.; Yang, C. L.; Chang, Z. X.; Zhu, R. M.; Pan, C. Y.; You, Y. Z.; Zhang, W. J.; Hong, C. Y. Polym. Chem. 2021, 12, 1768.
[47]
Xu, X. F.; Zhu, R. M.; Pan, C. Y.; You, Y. Z.; Zhang, W. J.; Hong, C. Y. Macromolecules 2021, 54, 2729.
[48]
Zhao, W.; Gody, G.; Dong, S. M.; Zetterlund, P. B.; Perrier, S. Polym. Chem. 2014, 5, 6990.
[49]
Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Nat. Chem. 2017, 9, 785.
[50]
Wang, J.; Cao, M. Y.; Zhou, P.; Wang, G. W. Macromolecules 2020, 53, 3157.
[51]
Zhou, C. C.; Wang, J.; Zhou, P.; Wang, G. W. Polym. Chem. 2020, 11, 2635.
[52]
Chen, J.; Sun, R. Y.; Liao, X. J.; Han, H. J.; Li, Y. W.; Xie, M. R. Macromolecules 2018, 51, 10202.
[53]
Le, D.; Dilger, M.; Pertici, V.; Diabate, S.; Gigmes, D.; Weiss, C.; Delaittre, G. Angew. Chem.-Int. Ed. 2019, 58, 4725.
[54]
Varlas, S.; Foster, J. C.; Arkinstall, L. A.; Jones, J. R.; Keogh, R.; Mathers, R. T.; O'Reilly, R. K. ACS Macro Lett. 2019, 8, 466.
[55]
Varlas, S.; Foster, J. C.; O'Reilly, R. K. Chem. Commun. 2019, 55, 9066.
[56]
Jiang, J. H.; Zhang, X. Y.; Fan, Z.; Du, J. Z. ACS Macro Lett. 2019, 8, 1216.
[57]
Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M. W.; Lecommandoux, S.; Bonduelle, C. Angew. Chem.-Int. Ed. 2020, 59, 622.
[58]
Wright, D. B.; Touve, M. A.; Adamiak, L.; Gianneschi, N. C. ACS Macro Lett. 2017, 6, 925.
[59]
Zhu, A. D.; Guo, M. Y. Chinese J. Polym. Sci. 2016, 34, 367.
[60]
Man, S. K.; Wang, X.; Zheng, J. W.; An, Z. S. Chinese J. Polym. Sci. 2020, 38, 9.
[61]
Zheng, J. W.; Wang, X.; An, Z. S. Acta Polym. Sin. 2019, 50, 1167. (in Chinese)
[61]
(郑晋文, 王晓, 安泽胜, 高分子学报, 2019, 50, 1167.)
[62]
Su, Z. P.; Tan, M. T.; Cao, Y. L.; Shi, Y.; Fu, Z. F. Acta Polym. Sin. 2019, 50, 808. (in Chinese)
[62]
(苏志鹏, 谈梦婷, 曹艳玲, 石艳, 付志峰, 高分子学报, 2019, 50, 808.)
[63]
Lv, F.; An, Z. S.; Wu, P. Y. CCS Chem. 2020, 2, 2211.
[64]
Li, D.; Huo, M.; Liu, L.; Zeng, M.; Chen, X.; Wang, X. S.; Yuan, J. Y. Macromol. Rapid Commun. 2019, 40, 1900202.
[65]
Li, J. W.; Chen, M.; Zhou, J. M.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymer 2021, 221, 123589.
[66]
Guimaraes, T. R.; Bong, Y. L.; Thompson, S. W.; Moad, G.; Perrier, S.; Zetterlund, P. B. Polym. Chem. 2021, 12, 122.
[67]
Deane, O. J.; Musa, O. M.; Fernyhough, A.; Armes, S. P. Macromolecules 2020, 53, 1422.
[68]
Wen, S. P.; Saunders, J. G.; Fielding, L. A. Polym. Chem. 2020, 11, 3416.
[69]
Zhang, W. J.; Hong, C. Y.; Pan, C. Y. RSC Adv. 2015, 5, 42637.
[70]
Shi, P. F.; Zhou, H.; Gao, C. Q.; Wang, S.; Sun, P. C.; Zhang, W. Q. Polym. Chem. 2015, 6, 4911.
[71]
Yang, P. C.; Ratcliffe, L. P. D.; Armes, S. P. Macromolecules 2013, 46, 8545.
[72]
Zhou, J. M.; Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Polym. Chem. 2016, 7, 3259.
[73]
Wan, W. M.; Hong, C. Y.; Pan, C. Y. Chem. Commun. 2009, 39, 5883.
Outlines

/