Article

Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction

  • Shaobing Yan ,
  • Long Jiao ,
  • Chuanxin He ,
  • Hailong Jiang
Expand
  • a Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
    b Department of Chemistry, Shenzhen University, Shenzhen, Guangdong 518071, China
* E-mail: ;
; Tel.: 0551-63607861; Fax: 0551-63607861

Received date: 2022-04-01

  Online published: 2022-05-06

Supported by

National Key Research and Development Program of China(2021YFA1500400); National Natural Science Foundation of China(21725101); National Natural Science Foundation of China(22161142001); National Natural Science Foundation of China(22001242)

Abstract

Commercial Pt/C, with the ideal 4e- transfer process for oxygen reduction reaction (ORR), is regarded as the optimal cathode catalyst of fuel cells at present. However, as a noble metal element, the high cost and scarcity of Pt seriously restrict the wide application of fuel cells. On account of this, cheap and high-performance non-noble metal catalysts receive extensive research attentions at present. In this work, by using graphene oxide (GO) as the template, we can realize the in-situ growth of Co-based metal organic framework (MOF) (ZIF-67) on the GO surface by means of the abundant oxygen-containing functional groups on GO, forming the ZIF-67/GO layered composite. During the pyrolysis at 700 ℃ in N2 atmosphere, the graphene can effectively inhibit the agglomeration of Co nanoparticles with the well retained layered morphology, which can be confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and nitrogen isothermal adsorption tests were used to analyze the components and microstructure of obtained materials. Moreover, the catalytic performances of different material towards ORR have been also measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis in alkaline electrolyte with rotating disk electrode (RDE) at different speeds. Thanks to the high dispersion of active sites, abundant pore structures and excellent conductivity of the obtained Co@N-C/rGO composite, it shows excellent ORR performances with an initial potential of 0.96 V and a half-wave potential of 0.83 V, far superior to that of the Co@N-C catalyst obtained by direct pyrolysis of ZIF-67, and even comparable to that of commercial Pt/C catalyst. In addition, the Co@N-C/rGO composite also exhibits good catalytic stability under constant potential for 20000 s and shows favorable methanol tolerance which is better than Pt/C, demonstrating its great potential as an oxygen reduction catalyst for fuel cell applications.

Cite this article

Shaobing Yan , Long Jiao , Chuanxin He , Hailong Jiang . Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction[J]. Acta Chimica Sinica, 2022 , 80(8) : 1084 -1090 . DOI: 10.6023/A22040143

References

[1]
Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027.
[2]
Tang, C.; Wang, H.-F.; Zhang, Q. Acc. Chem. Res. 2018, 51, 881.
[3]
Xu, H.; Cheng, D.; Cao, D.; Zeng, X. Nat. Catal. 2018, 1, 339.
[4]
He, C.; Wu, Q.-J.; Mao, M.-J.; Zou, Y.-H.; Liu, B.-T.; Huang, Y.-B.; Cao, R. CCS Chem. 2020, 2, 2368.
[5]
Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem., Int. Ed. 2022, 61, e202113278.
[6]
Yi, J.-D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K.-T.; Luo, J.; Liang, Y.-L.; Huang, Y.-B.; Cao, R. ACS Energy Lett. 2018, 3, 883.
[7]
Zhang, H.; Xia, W.; Shen, H.; Guo, W.; Liang, Z.; Zhang, K.; Wu, Y.; Zhu, B.; Zou, R. Angew. Chem., Int. Ed. 2020, 59, 1871.
[8]
Zhang, J.; Dai, L. ACS Catal. 2015, 5, 7244.
[9]
Jia, Y.; Xue, Z.; Yang, J.; Liu, Q.; Xian, J.; Zhong, Y.; Sun, Y.; Zhang, X.; Liu, Q.; Yao, D.; Li, G. Angew. Chem., Int. Ed. 2022, 61, e202110838.
[10]
Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; Zhang, Q; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2021, 60, 119262.
[11]
Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2022, 61, e202117347.
[12]
Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; Ma, J. Y.; Lin, F.; Su, D.; Lu, G.; Guo, S. Nature 2019, 574, 81.
[13]
Dou, S.; Tao, L.; Huo, J.; Wang, S.; Dai, L. Energy Environ. Sci. 2016, 9, 1320.
[14]
Chen, X.; Ma, D.-D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X.-T.; Zhu, Q.-L. Appl. Catal. B 2020. 267, 118720.
[15]
Lu, X.; Xia, B.; Zang, S.-Q.; Lou, X. Angew. Chem., Int. Ed. 2020, 59, 4634.
[16]
Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Natl. Sci. Rev. 2020, 7, 609.
[17]
Shan, Y.; Chen, L.; Pang, H.; Xu, Q. Small Struct. 2020, 2, 2000078.
[18]
He, C.; Liang, J.; Zou, Y.-H.; Yi, J.-D.; Huang, Y.-B.; Cao, R. Natl. Sci. Rev. 2021, DOI: 10.1093/nsr/nwab157.
[19]
Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Adv. Mater. 2018, 30, e1800396.
[20]
Jiao, L.; Yang, W.; Wan, G.; Zhang, R.; Zheng, X.; Zhou, H.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2020, 59, 20589.
[21]
Wang, Y.; Huang, N.-Y.; Shen, J.-Q.; Liao, P.-Q.; Chen, X.-M.; Zhang, J.-P. J. Am. Chem. Soc. 2018, 140, 38.
[22]
Jiao, L.; Zhou, Y.-X.; Jiang, H.-L. Chem. Sci. 2016, 7, 1690.
[23]
Wu, Q.; Zhang, C.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
[23]
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
[24]
Sun, T.; Li, Y.; Cui, T.; Xu, L.; Wang, Y.-G.; Chen, W.; Zhang, P.; Zheng, T.; Fu, X.; Zhang, S.; Zhang, Z.; Wang, D.; Li, Y. Nano Lett. 2020, 20, 6206.
[25]
Ding, D.; Shen, K.; Chen, X.; Chen, H.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 7879.
[26]
Yuan, S.; Zhang, J.; Hu, L.; Li, J.; Li, S.; Gao, Y.; Zhang, Q.; Gu, L.; Yang, W.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2021, 60, 21685.
[27]
Wang, Y.; Waterhouse, G.; Shang, L.; Zhang, T. Adv. Energy Mater. 2020, 11, 2003323.
[28]
Hu, L.; Li, W.; Wang, L.; Wang, B. EnergyChem 2021, 3, 100056.
[29]
Hwang, E. H.; Adam, S.; Sarma, S. Phys. Rev. Lett. 2007, 98, 186806.
[30]
Xue, Z.; Li, Y.; Zhang, Y.; Geng, W.; Jia, B.; Tang, J.; Bao, S.; Wang, H.-P.; Fan, Y.; Wei, Z.-W.; Zhang, Z.; Ke, Z.; Li, G.; Su, C.-Y. Adv. Energy Mater. 2018, 8, 1801564.
[31]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tuntuc, E; Banerjee, S.; Colombo, L.; Ruoff, R. Science 2009, 324, 1312.
[32]
Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
[32]
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
[33]
Stankovich, S.; Dikin, D; Dommett, G; Kohlhaas, K; Zimney, E.; Stach, E; Piner, R; Nguyen, S.; Ruoff, R. Nature 2006, 442, 282.
[34]
Stoller, M.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. Nano Lett. 2008, 8, 3498.
[35]
Liu, S.; Zhang, H.; Zhao, Q.; Zhang, X.; Liu, R.; Ge, X.; Wang, G.; Zhao, H.; Cai, W. Carbon 2016, 106, 74.
[36]
Chen, K.; Sun, Z.; Fang, R.; Shi, Y.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2018, 28, 1707592.
[37]
Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Adv. Funct. Mater. 2018, 28, 1804950.
[38]
Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese)
[38]
(张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.)
[39]
Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; Gu, L.; Zhao, H.; Li, Y.; Wang, D. Nature Chem. 2018, 10, 924.
[40]
Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S.-Z. Adv. Energy Mater. 2020, 10, 2000789.
[41]
Cheon, J.; Kim, K.; Sa, Y.; Sahgong, S.; Hong, Y.; Woo, J.; Yim, S.; Jeong, H. Y.; Kim, Y.; Joo, S. Adv. Energy Mater. 2016, 6, 1501794.
[42]
Jiang, M.; Fu, C.; Cheng, R.; Zhang, W.; Liu, T.; Wang, R.; Zhang, J.; Sun, B. Adv. Sci. 2020, 7, 2000747.
[43]
Han, H.; Wang, Y.; Zhang, Y.; Cong, Y.; Qin, J.; Gao, R.; Chai, C.; Song, Y. Acta Phys.-Chim. Sin. 2021, 37, 2008017. (in Chinese)
[43]
(韩洪仨, 王彦青, 张云龙, 丛媛媛, 秦嘉琪, 高蕊, 柴春晓, 宋玉江, 物理化学学报, 2021, 37, 2008017.)
[44]
Yi, J.; Li, Q.; Chi, S; Huang, Y.; Cao, R. Chem. Res. Chin. Univ. 2022, 38, 141.
[45]
Zhang, M.-D.; Yi, J.-D,; Huang, Y.-B.; Cao, R. Chin. J. Struct. Chem. 2021, 40, 1213.
Outlines

/