Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film
Received date: 2022-02-27
Online published: 2022-05-07
Supported by
National Natural Science Foundation of China(51973015); National Natural Science Foundation of China(52170019); Fundamental Research Funds for the Central Universities(06500100)
ZIF-8 is a Zn-based metal organic framework material which can adsorb acetone gas, so it can be used as the gas sensing material of capacitive acetone sensor. In addition, it can be combined with electrospinning nanofibers to form a fibrous gas sensitive material, so that the acetone sensor using it as the gas sensing material has excellent flexibility and this kind of excellent flexibility cannot be achieved in the research of flexible acetone sensor at present. In this work, ZIF-8/ polyacrylonitrile (PAN) nanofiber membrane composite with excellent flexibility was prepared by seed embedding method and secondary growth method. The key to the material preparation process is to prepare 2-methylimidazol/PAN composite membrane firstly by blended electrospinning and use the 2-methylimidazole embedded in the nanofiber membrane as the site for the growth of ZIF-8 on the surface of the nanofiber membrane. Then the metal salts and ligands needed for the growth of ZIF-8 were provided by the secondary growth method in stages and finally the fibrous gas sensitive material ZIF-8/PAN could be obtained. After that, a capacitive acetone sensor using flexible ZIF-8/PAN composite material as flexible gas sensing layer and carbon nanotubes as flexible electrode was prepared. The sensor has excellent flexibility, high porosity and fully exposed active site. Due to these characteristics, the sensor has a sensitive response to acetone gas in the range of 250~2000 cm3/m3, and the response shows good linearity (R2=0.99659). In addition, the sensor has good cyclic response, long-term stability, and shows good selectivity for acetone among nine common volatile organic compounds. It is worth noting that due to the excellent flexibility of the fibrous gas sensitive layer ZIF-8/PAN, the response value of the sensor to acetone gas under 180° bending state is almost the same as that to acetone under 0° unbending state, and the sensor also shows a stable response to acetone after 180° bending-recovery within 200 times. Besides these excellent performances in flexibility, the use temperature of the sensor is room temperature. These characteristics make it have the development potential to combine with clothing to form a portable flexible acetone sensor.
Ben Niu , Zhenyu Zhai , Xiaoke Hao , Tingli Ren , Congju Li . Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film[J]. Acta Chimica Sinica, 2022 , 80(7) : 946 -955 . DOI: 10.6023/A22020093
[1] | Li, X. Q.; Zhang, L.; Yang, Z. Q.; Wang, P.; Yan, Y. F.; Ran, J. Y. Sep. Purif. Technol. 2020, 235, 116213. |
[2] | Yang, C. T.; Miao, G.; Pi, Y. H.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. Chem. Eng. J. 2019, 370, 1128. |
[3] | Gardner, J. W.; Shin, H. W.; Hines, E. L. Sens. Actuators, B 2000, 70, 19. |
[4] | Liu, D.; Pervaiz, E.; Adimi, S.; Thomas, T.; Qu, F.; Huang, C.; Wang, R.; Jiang, H.; Yang, M. Appl. Surf. Sci. 2021, 566, 150642. |
[5] | Wang, C. X.; Cai, D. P.; Liu, B.; Li, H.; Wang, D. D.; Liu, Y.; Wang, L. L.; Wang, Y. R.; Li, Q. H.; Wang, T. H. J. Mater. Chem. A 2014, 2, 10623. |
[6] | Cavallari, M. R.; Izquierdo, J. E. E.; Braga, G. S.; Dirani, E. a. T.; Pereira-Da-Silva, M. A.; Rodríguez, E. F. G.; Fonseca, F. J. Sensors 2015, 15, 9592. |
[7] | Cao, R.; Zhao, S. Y.; Li, C. J. ACS Appl. Electron. Mater. 2019, 1, 2301. |
[8] | Zhang, X. L.; Na, J. W.; Xing, Y.; Li, C. J. Glob. Chall. 2019, 3, 1900070. |
[9] | Surya, S. G.; Bhanoth, S.; Majhi, S. M.; More, Y. D.; Teja, V. M.; Chappanda, K. N. CrystEngComm 2019, 21, 7303. |
[10] | Impeng, S.; Junkaew, A.; Maitarad, P.; Kungwan, N.; Zhang, D.; Shi, L.; Namuangruk, S. Appl. Surf. Sci. 2019, 473, 820. |
[11] | Hazra, A.; Das, S.; Kanungo, J.; Sarkar, C. K.; Basu, S. Sens. Actuators, B 2013, 183, 87. |
[12] | Paliwal, A.; Sharma, A.; Tomar, M.; Gupta, V. Sens. Actuators, B 2017, 250, 679. |
[13] | Li, Z.; Zhang, Y.; Zhang, H.; Yi, J. X. Sens. Actuators, B 2021, 344, 130182. |
[14] | Andrés, M. A.; Vijjapu, M. T.; Surya, S. G.; Shekhah, O.; Salama, K. N.; Serre, C.; Eddaoudi, M.; Roubeau, O.; Gascón, I. ACS Appl. Mater. Interfaces 2020, 12, 4155. |
[15] | Zeinali, S.; Homayoonnia, S.; Homayoonnia, G. Sens. Actuators, B 2019, 278, 153. |
[16] | Scott, A. J.; Majdabadifarahani, N.; Stewart, K. M. E.; Duever, T. A.; Penlidis, A. Macromol. React. Eng. 2020, 14, 2000004. |
[17] | Lan, K. B.; Wang, Z.; Yang, X. D.; Wei, J. Q.; Qin, Y. X.; Qin, G. X. Nanotechnology 2022, 33, 155502. |
[18] | Andrysiewicz, W.; Krzeminski, J.; Skarżynski, K.; Marszalek, K.; Sloma, M.; Rydosz, A. Electron. Mater. Lett. 2020, 16, 146. |
[19] | Zhang, L.; Guo, Y. Y. H.; Liu, G. Y.; Tan, Q. L. IEEE Access 2020, 8, 171568. |
[20] | Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese) |
[20] | (张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.) |
[21] | Li, C.; Li, N.; Chang, L. M.; Gu, Z. G.; Zhang, J. Acta Chim. Sinica 2022, 80, 340. (in Chinese) |
[21] | (李崇, 李娜, 常立美, 谷志刚, 张健, 化学学报, 2022, 80, 340.) |
[22] | Qi, Y.; Ren, S. S.; Che, Y.; Ye, J. W.; Ning, G. L. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
[22] | (齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
[23] | Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156. (in Chinese) |
[23] | (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.) |
[24] | Zhai, Z. Y.; Zhang, X. L.; Wang, J. N.; Li, H. Y.; Sun, Y. X.; Hao, X. K.; Qin, Y.; Niu, B.; Li, C. J. Chem. Eng. J. 2022, 428, 131720. |
[25] | Zhang, X. L.; Hao, X. K.; Zhai, Z. Y.; Wang, J. N.; Li, H. Y.; Sun, Y. X.; Qin, Y.; Niu, B.; Li, C. Appl. Surf. Sci. 2022, 573, 151446. |
[26] | Szilágyi, P. Á.; Westerwaal, R. J.; Van De Krol, R.; Geerlings, H.; Dam, B. J. Mater. Chem. C 2013, 1, 8146. |
[27] | Chen, B. L.; Yang, Z. X.; Zhu, Y. Q.; Xia, Y. D. J. Mater. Chem. A 2014, 2, 16811. |
[28] | Peng, L, C.; Zhang, X, L..; Sun, Y, X.; Xing, Y.; Li, C, J. Environ. Res. 2020, 188, 109742. |
[29] | Venkatesh, M. R.; Sachdeva, S.; El Mansouri, B.; Wei, J.; Bossche, A.; Bosma, D.; De Smet, L. C. P. M.; Sudhölter, E. J. R.; Zhang, G. Q. Sensors 2019, 19, 888. |
[30] | Sun, Y. X.; Zhang, X. L.; Xi, H. L.; Li, C. J. Fine Chem. 2020, 37, 1334. (in Chinese) |
[30] | (孙亚昕, 张秀玲, 习海玲, 李从举, 精细化工, 2020, 37, 1334.) |
[31] | Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2020, 12, 18437. |
[32] | Ma, K. K.; Wang, Y. F.; Chen, Z. J.; Islamoglu, T.; Lai, C. L.; Wang, X. W.; Fei, B.; Farha, O. K.; Xin, J. H. ACS Appl. Mater. Interfaces 2019, 11, 22714. |
[33] | Ma, K.; Idrees, K. B.; Son, F. A.; Maldonado, R.; Wasson, M. C.; Zhang, X.; Wang, X.; Shehayeb, E.; Merhi, A.; Kaafarani, B. R.; Islamoglu, T.; Xin, J. H.; Farha, O. K. Chem. Mater. 2020, 32, 7120. |
[34] | Hao, X. K.; Zhai, Z. Y.; Sun, Y. X.; Li, C. J. Acta Chim. Sincia 2022, 80, 49. (in Chinese) |
[34] | (郝肖柯, 翟振宇, 孙亚昕, 李从举, 化学学报, 2022, 80, 49.) |
[35] | Zhang, X. L.; Fan, W.; Li, H.; Zhao, S. Y.; Wang, J. N.; Wang, B.; Li, C. J. J. Mater. Chem. A 2018, 6, 21458. |
[36] | Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y.; Wang, Z. L.; Li, C. J. Nano Res. 2018, 11, 3771. |
[37] | Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Someya, T. Science 2020, 370, 966. |
[38] | Homayoonnia, S.; Zeinali, S. Sens. Actuators, B 2016, 237, 776. |
[39] | Tung, T. T.; Tran, M. T.; Feller, J.-F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M. J.; Losic, D. Carbon 2020, 159, 333. |
[40] | Bahri, M.; Haghighat, F.; Kazemian, H.; Rohani, S. Chem. Eng. J. 2017, 313, 711. |
[41] | Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2006, 45, 1557. |
[42] | Shekhah, O.; Eddaoudi, M. Chem. Commun. 2013, 49, 10079. |
/
〈 |
|
〉 |