High-Performance Flexible Photonic Synapse Transistors Based on a Bulk Composite Film of Organic Semiconductors with Complementary Absorption
Received date: 2022-03-02
Online published: 2022-05-07
Supported by
National Natural Science Foundation of China(52173241); Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2019J06023); Director’s Fund of Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR116)
Photonic synapse transistors have attracted growing attention due to their salient advantages in information transmission/processing and good potentials for analog neural computing. Currently, most synapse transistors are rigid devices with the limitations in flexible and highly photosensitive semiconductor channel layers. To achieve high-performance flexible photonic synapse transistors, it is essential to develop stimuli-responsive organic semiconductor thin-films to broaden the photo-response range of devices and accelerate separation of photoinduced carriers for improving synaptic performances. Here, poly(3-hexylthiophene) (P3HT) and poly(indacenodithiophene-co-benzothiadiazole) (PIDT-BT) materials with complementary optical absorption have been used to fabricate a bulk composite film of organic semiconductor heterostructures by a solution-processing method. The surface structures and optoelectronic properties of the PIDT-BT:P3HT film and their single component films are studied. By using the PIDT-BT:P3HT heterostructure film as a novel photoactive channel layer, flexible low-voltage photonic synapse transistors have been designed and fabricated with the combination of polyelectrolyte-based dielectrics. The effects of different optical stimulation conditions on the performance of synapse transistors are investigated with insightful discussion on the semiconductor mechanisms. The flexible synapse transistors based on the PIDT-BT:P3HT film exhibit higher excitatory postsynaptic currents than devices with the single component semiconductor layers at the same optical stimulation. The synaptic response of the PIDT-BT:P3HT-based device is also evaluated under different stimulus variables including the optical spike wavelength, duration and frequency. As results, good synaptic characteristics are observed including the high excitatory postsynaptic current, paired-pulse facilitation, and frequency-dependent properties with the tunable synaptic plasticity. It is found that the response in excitatory postsynaptic current of the synaptic device stimulated by two beams (520 nm green laser and 685 nm red laser) together is greater than the sum of the responses stimulated by each beam alone. These results are useful for the design of high-performance photoresponsive semiconductor films and photonic synapse transistors, which are conducive to the development of low-power flexible optoelectronic devices, artificial synapses and beyond.
Jiaxian Sun , Yuting Liu , Zhigang Yin , Qingdong Zheng . High-Performance Flexible Photonic Synapse Transistors Based on a Bulk Composite Film of Organic Semiconductors with Complementary Absorption[J]. Acta Chimica Sinica, 2022 , 80(7) : 936 -945 . DOI: 10.6023/A22030096
[1] | Rosenbluth, D.; Kravtsov, K.; Fok, M. P.; Prucnal, P. R. Opt. Express 2009, 17, 22767. |
[2] | Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C. W.; Qiu, J.; Hua, K.; Su, W.; Wu, J.; Xu, H.; Han, Y.; Fu, C.; Yin, Z.; Liu, M.; Roepman, R.; Dietmann, S.; Virta, M.; Kengara, F.; Zhang, Z.; Zhang, L.; Zhao, T.; Dai, J.; Yang, J.; Lan, L.; Luo, M.; Liu, Z.; An, T.; Zhang, B.; He, X.; Cong, S.; Liu, X.; Zhang, W.; Lewis, J. P.; Tiedje, J. M.; Wang, Q.; An, Z.; Wang, F.; Zhang, L.; Huang, T.; Lu, C.; Cai, Z.; Wang, F.; Zhang, J. The Innovation 2021, 2, 100179. |
[3] | Liu, G.; Wang, T. Acta Chim. Sinica 2017, 75, 1029. (in Chinese) |
[3] | (柳冈, 王铁, 化学学报, 2017, 75, 1029.) |
[4] | Ma, Y.; Chen, K.; Guo, Z.; Liu, S.; Zhao, Q.; Wong, W. Y. Acta Chim. Sinica 2020, 78, 23. (in Chinese) |
[4] | (马云, 陈可欣, 郭则灵, 刘淑娟, 赵强, 黄维扬, 化学学报, 2020, 78, 23.) |
[5] | Zidan, M. A.; Strachan, J. P.; Lu, W. D. Nat. Electron. 2018, 1, 22. |
[6] | Service, R. F. Science 2014, 345, 614. |
[7] | Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Nakamura, Y.; Brezzo, B.; Vo, I.; Esser, S. K.; Appuswamy, R.; Taba, B.; Amir, A.; Flickner, M. D.; Risk, W. P.; Manohar, R.; Modha, D. S. Science 2014, 345, 668. |
[8] | Kuzum, D.; Yu, S.; Wong, H. P. Nanotechnology 2013, 24, 382001. |
[9] | Drachman, D. A. Neurology 2005, 64, 2004. |
[10] | Bian, Y.; Liu, K.; Guo, Y.; Liu, Y. Acta Chim. Sinica 2020, 78, 848. (in Chinese) |
[10] | (边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.) |
[11] | Huang, X.; Guo, Y.; Liu, Y. Chem. Commun. 2021, 57, 11429. |
[12] | Wang, S.; Dong, X.; Xiong, Y.; Sha, J.; Cao, Y.; Wu, Y.; Li, W.; Yin, Y.; Wang, Y. Adv. Electron. Mater. 2021, 7, 2100014. |
[13] | Lee, T. H.; Hwang, H. G.; Woo, J. U.; Kim, D. H.; Kim, T. W.; Nahm, S. ACS Appl. Mater. Interfaces 2018, 10, 25673. |
[14] | Suri, M.; Bichler, O.; Hubert, Q.; Perniola, L.; Sousa, V.; Jahan, C.; Vuillaume, D.; Gamrat, C.; Desalvo, B. Solid State Electron. 2013, 79, 227. |
[15] | Chen, C.; Zhu, J. Y.; Chen, Y. Q.; Wang, G. X. J. Alloys Compd. 2022, 892, 162148. |
[16] | Wu, X.; Dai, D.; Ling, Y.; Chen, S.; Huang, C.; Feng, S.; Huang, W. ACS Appl. Mater. Interfaces 2020, 12, 30627. |
[17] | Dai, S.; Wang, Y.; Zhang, J.; Zhao, Y.; Xiao, F.; Liu, D.; Wang, T.; Huang, J. ACS Appl. Mater. Interfaces 2018, 10, 39983. |
[18] | Dai, S.; Wu, X.; Liu, D.; Chu, Y.; Wang, K.; Yang, B.; Huang, J. ACS Appl. Mater. Interfaces 2018, 10, 21472. |
[19] | Chen, H.; Lv, L.; Wei, Y.; Liu, T.; Wang, S.; Shi, Q.; Huang, H. Cell Rep. Phys. Sci. 2021, 2, 100507. |
[20] | Zhang, Q.; Ye, X.; Zheng, Y.; Wang, Y.; Li, L.; Gao, Z.; Wu, J.; Dong, H.; Geng, D.; Hu, W. J. Mater. Chem. C 2022, 10, 2681. |
[21] | Wang, X.; Yan, Y.; Li, E.; Liu, Y.; Lai, D.; Lin, Z.; Liu, Y.; Chen, H.; Guo, T. Nano Energy 2020, 75, 104952. |
[22] | Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Adv. Funct. Mater. 2019, 29, 1903700. |
[23] | Wang, Y.; Zhu, Y.; Li, Y.; Zhang, Y.; Yang, D.; Pi, X. Adv. Funct. Mater. 2021, 32, 2107973. |
[24] | Li, Y.; Wang, Y.; Yin, L.; Huang, W.; Peng, W.; Zhu, Y.; Wang, K.; Yang, D.; Pi, X. Sci. China Inf. Sci. 2021, 64, 162401. |
[25] | Wu, F. C.; Li, P. R.; Lin, B. R.; Wu, R. J.; Cheng, H. L.; Chou, W. Y. ACS Appl. Mater. Interfaces 2021, 13, 45822. |
[26] | Wu, R. J.; Hsu, Y. L.; Chou, W.; Cheng, H. L. J. Mater. Chem. A 2021, 9, 22522. |
[27] | Guo, C. F.; Ding, L. The Innovation 2021, 2, 100074. |
[28] | Yin, Z.; Yin, M.; Liu, Z.; Zhang, A. P.; Zheng, Q. Adv. Sci. 2018, 5, 1701041. |
[29] | Shan, G.; Li, X.; Huang, W. The Innovation 2020, 1, 100031. |
[30] | Yin, M.; Yin, Z.; Zhang, Y.; Zheng, Q.; Zhang, A. P. Nano Energy 2019, 58, 96. |
[31] | Liu, Z.; Yin, Z.; Wang, J.; Zheng, Q. Adv. Funct. Mater. 2019, 29, 1806092. |
[32] | Jiang, Y.; Liu, Z.; Yin, Z.; Zheng, Q. Mater. Chem. Front. 2020, 4, 1459. |
[33] | Savenije, T. J.; Kroeze, J. E.; Yang, X.; Loos, J. Thin Solid Films 2006, 511-512, 2. |
[34] | Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; Mcculloch, I. J. Am. Chem. Soc. 2020, 142, 652. |
[35] | Fang, L.; Dai, S.; Zhao, Y.; Liu, D.; Huang, J. Adv. Electron. Mater. 2020, 6, 1901217. |
[36] | Wang, K.; Dai, S.; Zhao, Y.; Wang, Y.; Liu, C.; Huang, J. Small 2019, 15, 1900010. |
[37] | Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B.; Zhang, J. ACS Nano 2021, 15, 1497. |
[38] | Kwon, S. M.; Kwak, J. Y.; Song, S.; Kim, J.; Jo, C.; Cho, S. S.; Nam, S. J.; Kim, J.; Park, G. S.; Kim, Y. H.; Park, S. K. Adv. Mater. 2021, 33, 2105017. |
[39] | Yang, Q.; Yang, H.; Lv, D.; Yu, R.; Li, E.; He, L.; Chen, Q.; Chen, H.; Guo, T. ACS Appl. Mater. Interfaces 2021, 13, 8672. |
[40] | Wang, H.; Zhao, Q.; Ni, Z.; Li, Q.; Liu, H.; Yang, Y.; Wang, L.; Ran, Y.; Guo, Y.; Hu, W.; Liu, Y. Adv. Mater. 2018, 30, 1803961. |
/
〈 |
|
〉 |