Interficial Engineering of Lithium Metal Anode for Sulfide Solid State Batteries
Received date: 2022-04-01
Online published: 2022-05-24
Supported by
National Natural Science Foundation of China(51773042); National Natural Science Foundation of China(51973040)
Lithium metal anode is recognized as the “Holy Grail” electrode because of its high specific capacity (3860 mAh/g) and low reduction potential (–3.04 V vs. standard hydrogen electrode), which is meaningful for batteries systems. Remarkable improvement of ionic conductivity of sulfide electrolyte exceeding 10 mS/cm at room temperature has opened up the opportunity to realized the commercialization of lithium metal anode. However, the practical implement of Li anode in solid-state batteries is hundered by the poor cycle stability and the low energy efficiency stemming from the unstable interfaces due to the ultrahigh reactivity of lithium metal. At the anode interface, the lithium dendrite growth and solid electrolytes (SE) reduction by lithium metal are serious challenges for lithium metal anode. To suppress the interfacial reactions and lithium dendrite formation at the sulfide electrolyte/Li metal anode interface, various strategies have been implemented by researchers, such as in situ formed robust SEI (solid electrolyte interface), surface modification and SE modification, etc. In this article, we focus on the artificial solid electrolyte interface (ASEI) to strengthening the Li metal and solid electrolyte interface. We fabricate the uniform LiF-rich ASEI using CF3(CF2)3OCH3 by heating at a temperature of 150 ℃ for 6 h. LiF layer at the interface between Li and sulfide electroyte could prevent Li dendrite growth. Compared to the Li/sulfide electrolyte interface, the Li/LiF/sulfide electrolyte interface is more stable. The symmetrical cell LiF@Li//Li6PS5Cl//LiF@Li (LiF@Li//LPSCl//LiF@Li) does not short-circuit after 40 cycles at the current density of 0.1 mAh/cm2 with a lower polarization potential. A solid-state battery LiNbO2@LiCoO2//LPSCl//LiF@Li (LNO@LCO//LPSCl//LiF@Li) employing LiF coated Li metal as anode shows a high reversible discharge capacity of 138.4 mAh/g at 0.05 C and retains 110.9 mAh/g after 50 cycles. This interficial engineering for lithium metal and sulfide solid electrolyte provides new opportunity to commercialize the Li metal batteries.
Shishuo Liang , Shusen Kang , Dong Yang , Jianhua Hu . Interficial Engineering of Lithium Metal Anode for Sulfide Solid State Batteries[J]. Acta Chimica Sinica, 2022 , 80(9) : 1264 -1268 . DOI: 10.6023/A22040144
[1] | Niu C.; Pan H.; Xu W.; Xiao J.; Zhang J.; Luo L.; Wang C.; Mei D.; Meng J.; Wang X.; Liu Z.; Mai L.; Liu J. Nat. Nanotechnol. 2019, 14, 594. |
[2] | Han B.; Xu D.; Chi S.; He D.; Zhang Z.; Du L.; Gu M.; Wang C.; Meng H.; Xu K.; Zheng Z.; Deng Y. Adv. Mater. 2020, 2004793. |
[3] | Lin D.; Liu Y.; Cui Y. Nat. Nanotechnol. 2017, 12, 194. |
[4] | Hao Z.; Wu Y.; Zhao Q.; Tang J.; Zhang Q.; Ke X.; Liu J.; Jin Y.; Wang H. Adv. Funct. Mater. 2021, 2102938. |
[5] | Lin X.; Chu C.; Li Z.; Zhang T.; Chen J.; Liu R.; Li R.; Li P.; Li Y.; Zhao J.; Huang Z.; Feng X.; Xie Y.; Ma Y. Nano Energy 2021, 89, 106351. |
[6] | Adams B. D.; Zheng J.; Ren X.; Xu W.; Zhang J. Adv. Energy Mater. 2017, 1702097. |
[7] | He Y.; Zhang Y.; Wang Z.; Li X.; Lu Z.; Huang X.; Liu Z. Adv. Funct. Mater. 2021, 2101737. |
[8] | Luo Y.; Li T.; Zhang H.; Liu W.; Zhang X.; Yan J.; Zhang H.; Li X. Angew. Chem. Int. Ed. 2021, 60, 11718. |
[9] | Liu D.; Bai Z.; Li M.; Yu A.; Luo D.; Liu W.; Yang L.; Lu J.; Amine K.; Chen Z. Chem. Soc. Rev. 2020, 49, 5407. |
[10] | Zhang X. Q.; Cheng X. B.; Chen X.; Yan C.; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989. |
[11] | Kang S.; Yang C.; Yang Z.; Wu N.; Zhao S.; Chen X.; Liu F.; Shi B. Acta Chim. Sinica 2020, 78, 1441.(in Chinese) |
[11] | (康树森, 杨程响, 杨泽林, 吴宁宁, 赵姗, 陈晓涛, 刘富亮, 石斌, 化学学报, 2020, 78, 1441.) |
[12] | Wu S.; Zhang Z.; Lan M.; Yang S.; Cheng J.; Cai J.; Shen J.; Zhu Y.; Zhang K.; Zhang W. Adv. Mater., 2018, 30, 1705830. |
[13] | Zhao Y.; Goncharova L. V. Sun Q.; Li X.; Lushington A.; Wang B.; Li R.; Dai F.; Cai M.; Sun X. Small Methods 2018, 2, 1700417. |
[14] | Tang W.; Yin X.; Kang S.; Chen Z.; Tian B.; Teo S. L.; Wang X.; Chi X.; Loh P. K.; Lee H. W.; Zheng G. W. Adv. Mater. 2018, 30, 1801745. |
[15] | Kang S.; Yang Z.; Yang C.; Zhao S.; Wu N.; Chen X.; Liu F.; Shi B. Ionics 2021, 27, 2037. |
[16] | Li N.; Shi Y.; Yin Y.; Zeng X.; Li J.; Li C.; Wan L.; Wen R.; Guo Y. Angew. Chem., Int. Ed. 2018, 57, 1505. |
[17] | Liu Q.; Geng Z.; Han C.; Fu Y.; Li S.; He Y.; Kang F.; Li B. J. Power Sources 2018, 389, 120. |
[18] | Zhang Q.; Cao D.; Ma Y.; Natan A.; Aurora P.; Zhu H. Adv. Mater. 2019, 1901131. |
[19] | Kamaya N.; Homma K.; Yamakawa Y.; Hirayama M.; Kanno R.; Yonemura M.; Kamiyama T.; Kato Y.; Hama S.; Kawamoto K.; Mistsui A. Nat. Mater. 2011, 10, 682. |
[20] | Haruyama J.; Sodeyama K.; Tateyama Y. ACS Appl. Mater. Interfaces 2017, 9, 286. |
[21] | Zhou L.; Assoud A.; Zhang Q.; Wu X.; Nazar L. F. J. Am. Chem. Soc. 2019, 141, 19002. |
[22] | Chen H.; Wang C.; Dong W.; Lu W.; Du Z.; Chen L. Nano Lett. 2015, 15, 798. |
[23] | Zhamu A.; Chen G.; Liu C.; Neff D.; Fang Q.; Yu Z.; Xiong W.; Wang Y.; Wang X.; Jang B. Energy Environ. Sci. 2012, 5, 5701. |
[24] | Kasemchainan J.; Zekoll S.; Spencer D.; Ning Z.; Hartley G.; Marrow J.; Bruce P. Nat. Mater. 2019, 18, 1105. |
[25] | Nagao M.; Hayashi A.; Tatsumisago M.; Kanetsuku T.; Tsuda T.; Kuwabata S. Phys. Chem. Chem. Phys. 2013, 15, 18600. |
[26] | Kazyak E.; Wood K.; Dasgupta N. Chem. Mater. 2015, 27, 6457. |
[27] | Zhu B.; Jin Y.; Hu X.; Zheng Q.; Zhang S.; Wang Q.; Zhu J. Adv. Mater. 2017, 29, 1603755. |
[28] | Bai M.; Xie K.; Yuan K.; Zhang K.; Li N.; Shen C.; Lai Y.; Vajyan P.; Wei B. Adv. Mater. 2018, 30, 1801213. |
[29] | Liu Q.; Xu J.; Yuan S.; Chang Z.; Xu D.; Yin Y.; Li L.; Zhong H.; Jiang Y.; Yan J.; Zhang X. Adv. Mater. 2015, 27, 5241. |
[30] | Lang L.; Long Y.; Qu J.; Luo X.; Wei H.; Huang K.; Zhang H.; Qi L.; Zhang Q.; Li Z.; Wu H. Energy, Storage Mater. 2019, 16, 85. |
[31] | Han X.; Gong Y.; Fu K.; He X.; Hitz G.; Dai J.; Pearse A.; Liu B.; Wang H.; Rubloff G.; Mo Y.; Thangadurai V.; Wachsman E.; Hu L. Nat. Mater. 2017, 16, 572. |
[32] | Liu Y.; Tzeng Y.; Lin D.; Pei A.; Lu H.; Melosh N.; Shen Z.; Chu S.; Cui Y. Joule 2018, 2, 1595. |
[33] | Xu R.; Cheng X.; Yan C.; Zhang X.; Xiao Y.; Zhao C.; Huang J.; Zhang Q. Matter 2019, 1, 317. |
[34] | Wang M.; Peng Z.; Luo W.; Ren F.; Li Z.; Zhang Q.; He H.; Ouyang C.; Wang D. Adv. Energy Mater. 2019, 12, 1802912. |
[35] | Wang S.; Fang R.; Li Y.; Liu Y.; Xin C.; Richer F.; Nan C. J. Materiomics 2021, 7, 209. |
[36] | Xu R.; Han F.; Ji X.; Fan X.; Tu J.; Wang C. Nano Energy 2018, 5, 958. |
/
〈 |
|
〉 |