Ruthenium Nanoparticles Anchored on Nitrogen-Doped Carbon Nanocages for Fischer-Tropsch Synthesis
Received date: 2022-03-31
Online published: 2022-05-26
Supported by
National Key Research and Development Program of China(2018YFA0209100); National Key Research and Development Program of China(2017YFA0206500); National Key Research and Development Program of China(2021YFA1500900); National Natural Science Foundation of China(21972061); National Natural Science Foundation of China(21832003); National Natural Science Foundation of China(52071174); Natural Science Foundation of Jiangsu Province, Major Project(BK20212005)
Fischer-Tropsch synthesis (FTS) is an important heterogeneous catalytic process in post-petroleum era, which can convert syngas from natural gas, coals and biomass into high value-added chemicals such as low-carbon olefins and fuel oil. In general, the target products have low selectivity owing to the limitation of Anderson-Schulz-Flory distribution law. The selectivity of target products can be adjusted by controlling the composition and structure of catalysts, supports and promotors. Carbon materials have been used as the remarkable supports due to the merits of rich morphological structure, high specific surface area, easily-regulated surface properties by doping and modification, good stability and so forth. Herein, taking advantage of the high specific surface area and high N content of N-doped carbon nanocages (NCNC), Ru/NCNC catalysts is prepared by equal volume impregnation method. As compared, Ru/CNC catalyst is prepared using undoped carbon nanocages (CNC) as support. Ru nanoparticles with ca. 3.9 nm in size were homogeneously dispersed on NCNC. The Ru nanoparticles on NCNC have the smaller sizes and more narrow distribution than those on CNC owing to the anchoring effect of nitrogen dopants for the former. The Ru/NCNC catalyst showed excellent catalytic performance, including good catalytic activity, high selectivity of C5+ products (55.7%), low selectivity of CH4 (13.5%) and high stability (60 h, CO conversion maintained at the level of ≈33%), evidently surpassing Ru/CNC. Such excellent FTS performance of Ru/NCNC can be attributed to the following reasons. (i) N doping increases the number of catalytic centers and density of electronic states of metallic Ru, and subsequently improving the catalytic activity, inhibiting the hydrogenation of intermediate products, increasing the chain growth possibility, and finally producing more long-chain products (C5+). (ii) N doping enhances the surface alkalinity of nanocages and then is conducive to inhibiting the formation of CH4. (iii) The metal-support interaction is enhanced due to the participation of N, leading to significantly improved anti-sintering ability and catalytic stability. This finding provides a promising strategy for developing high-performance FTS catalysts via designing N-doped carbon supports.
Zhihao Qi , Fujie Gao , Changkai Zhou , Yu Zeng , Qiang Wu , Lijun Yang , Xizhang Wang , Zheng Hu . Ruthenium Nanoparticles Anchored on Nitrogen-Doped Carbon Nanocages for Fischer-Tropsch Synthesis[J]. Acta Chimica Sinica, 2022 , 80(8) : 1100 -1105 . DOI: 10.6023/A22030139
[1] | Galvis, H. M. T.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Science 2012, 335, 835. |
[1] | Bao, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. ACS Catal. 2019, 9, 3026. |
[2] | Zhou, W.; Cheng, K.; Kang, J.; Zhou, C.; Subramanian, V.; Zhang, Q.; Wang, Y. Chem. Soc. Rev. 2019, 48, 3193. |
[3] | Chen, Y.; Wei, J.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Chem. Soc. Rev. 2021, 50, 2337. |
[4] | Martinez, L.; Merino, P.; Santoro, G.; Martinez, J. I.; Katsanoulis, S.; Ault, J.; Mayoral, A.; Vazquez, L.; Accolla, M.; Dazzi, A.; Mathurin, J.; Borondics, F.; Blazquez-Blazquez, E.; Shauloff, N.; Lebron-Aguilar, R.; Quintanilla-Lopez, J. E.; Jelinek, R.; Cernicharo, J.; Stone, H. A.; de la Pena O'Shea, V. A.; de Andres, P. L.; Haller, G.; Ellis, G. J.; Martin-Gago, J. A. Nat. Commun. 2021, 12, 5937. |
[5] | Galvis, H. M. T.; de Jong, K. P. ACS Catal. 2013, 3, 2130. |
[6] | Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692. |
[7] | Meng, G.; Sun, J.; Tao, L.; Ji, K.; Wang, P.; Wang, Y.; Sun, X.; Cui, T.; Du, S.; Chen, J.; Wang, D.; Li, Y. ACS Catal. 2021, 11, 1886. |
[8] | van Ravenhorst, I. K.; Vogt, C.; Oosterbeek, H.; Bossers, K. W.; Moya-Cancino, J. G.; van Bavel, A. P.; van der Eerden, A. M. J.; Vine, D.; de Groot, F. M. F.; Meirer, F.; Weckhuysen, B. M. Angew. Chem., nt. Ed. 2018, 57, 11957. |
[9] | Hernandez Mejia, C.; van der Hoeven, J. E. S.; de Jongh, P. E.; de Jong, K. P. ACS Catal. 2020, 10, 7343. |
[10] | Yang, X.; Guo, X.; Zhang, C.; Wang, X.; Yang, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 360. (in Chinese) |
[10] | (杨向平, 郭晓雪, 张成华, 王小萍, 杨勇, 李永旺, 化学学报, 2017, 75, 360.) |
[11] | Sun, D.; Sun, B.; Pei, Y.; Yan, S.; Fan, K.; Qiao, M.; Zhang, X.; Zong, B. Acta Chim. Sinica 2021, 79, 771. (in Chinese) |
[11] | (孙冬, 孙博, 裴燕, 闫世润, 范康年, 乔明华, 张晓昕, 宗保宁, 化学学报, 2021, 79, 771.) |
[12] | de Smit, E.; Weckhuysen, B. M. Chem. Soc. Rev. 2008, 37, 2758. |
[13] | Okonye, L. U.; Yao, Y.; Hildebrandt, D.; Meijboom, R. Sustainable Energy Fuels 2021, 5, 79. |
[14] | Lü, J.; Hu, R.; Zhuo, O.; Xu, B.; Yang, L.; Wu, Q.; Wang, X.; Fan, Y.; Hu, Z. Acta Chim. Sinica 2014, 72, 1017. (in Chinese) |
[14] | (吕金钊, 胡仁之, 卓欧, 许波连, 杨立军, 吴强, 王喜章, 范以宁, 胡征, 化学学报, 2014, 72, 1017.) |
[15] | Yang, J.; Zhao, B.; Zhao, H.; Lu, A.; Ma, D. Acta Chim. Sinica 2013, 71, 1365. (in Chinese) |
[15] | (杨敬贺, 赵博, 赵华博, 陆安慧, 马丁, 化学学报, 2013, 71, 1365.) |
[16] | Gao, R.; Li, G.; Chen, Y.; Zeng, Y.; Zhao, J.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2021, 79, 755. (in Chinese) |
[16] | (高润洲, 李国昌, 陈轶群, 曾誉, 赵杰, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 755.) |
[17] | Zeng, Y.; Lyu, P.; Cai, Y.; Gao, F.; Zhuo, O.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2021, 79, 539. (in Chinese) |
[17] | (曾誉, 吕品, 蔡跃进, 高福杰, 卓欧, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 539.) |
[18] | Kang, J.; Zhang, S.; Zhang, Q.; Wang, Y. Angew. Chem., nt. Ed. 2009, 48, 2565. |
[19] | Lu, J.; Yang, L.; Xu, B.; Wu, Q.; Zhang, D.; Yuan, S.; Zhai, Y.; Wang, X.; Fan, Y.; Hu, Z. ACS Catal. 2014, 4, 613. |
[20] | Zhuo, O.; Yang, L.; Gao, F.; Xu, B.; Wu, Q.; Fan, Y.; Zhang, Y.; Jiang, Y.; Huang, R.; Wang, X.; Hu, Z. Chem. Sci. 2019, 10, 6083. |
[21] | Zhang, Y.; Yang, X.; Yang, X.; Duan, H.; Qi, H.; Su, Y.; Liang, B.; Tao, H.; Liu, B.; Chen; Su, X.; Huang, Y.; Zhang, T. Nat. Commun. 2020, 11, 3185. |
[22] | Yan, L.; Liu, J.; Wang, X.; Ma, C.; Zhang, C.; Wang, H.; Wei, Y.; Wen, X.; Yang, Y.; Li, Y. Appl. Surface Sci. 2020, 526. |
[23] | Chen, S.; Bi, J.; Zhao, Y.; Yang, L.; Zhang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593. |
[24] | Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435. |
[25] | Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541. |
[26] | Cai, Y.; Liu, C.; Zhuo, O.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2017, 75, 686. (in Chinese) |
[26] | (蔡跃进, 刘晨霞, 卓欧, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2017, 75, 686.) |
[27] | Macheli, L.; Carleschi, E.; Doyle, B. P.; Leteba, G.; van Steen, E. J. Catal. 2021, 395, 70. |
[28] | Xiong, H.; Motchelaho, M. A.; Moyo, M.; Jewell, L. L.; Coville, N. J. Appl. Catal. A: Gen. 2014, 482, 377. |
[29] | Ralston, W. T.; Melaet, G.; Saephan, T.; Somorjai, G. A. Angew. Chem.,Int. Ed. 2017, 56, 7415. |
[30] | Qiu, C.; Wu, B.; Meng, S.; Li, Y. Acta Chim. Sinica 2015, 73, 690. (in Chinese) |
[30] | (邱成武, 吴宝山, 孟劭聪, 李永旺, 化学学报, 2015, 73, 690.) |
[31] | Goodwin, J. G.; Goa, D. O.; Erdal, S.; Rogan, F. H. Appl. Catal. 1986, 24, 199. |
/
〈 |
|
〉 |