Chiral Organic Optoelectronic Materials and Circularly Polarized Light Luminescence and Detection
Received date: 2022-03-21
Online published: 2022-06-01
Supported by
Ministry of Science and Technology of China(2021YFA1200303); National Natural Science Foundation of China(21721002); National Natural Science Foundation of China(52003065); National Natural Science Foundation of China(51673049); National Natural Science Foundation of China(21975059); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36010200); China Postdoctoral Science Foundation(2019M660584)
Chiral organic semiconductors have stimulated extensive research interests in the field of organic optoelectronics due to their fascinating properties. The incorporation of chirality into organic semiconducting materials can not only control their aggregation states by virtue of the unique non-covalent interactions among chiral molecules to regulate electronic/ optoelectronic properties, but also facilitates the emergence and development of circularly polarized light direct luminescence and detection. The interactions between chiral materials and circularly polarized light allow them to show broad application prospects in the field of three-dimensional display, quantum communications, information storage and processing, and so forth. This review summarizes the research progress of chiral organic optoelectronic materials and devices in recent years. It mainly reviews the influence of chirality on material properties and device performance, focusing on the applications of circularly polarized light luminescence and detection using chiral organic semiconductors, and aiming to promote the development of relevant research in the field of chiral optoelectronics.
Lixuan Liu , Yang Yang , Zhixiang Wei . Chiral Organic Optoelectronic Materials and Circularly Polarized Light Luminescence and Detection[J]. Acta Chimica Sinica, 2022 , 80(7) : 970 -992 . DOI: 10.6023/A22030123
[1] | Morrow, S. M.; Bissette, A. J.; Fletcher, S. P. Nature Nanotech. 2017, 12, 410. |
[2] | Brandt, J. R.; Salerno, F.; Fuchter, M. J. Nat. Rev. Chem. 2017, 1, 0045. |
[3] | Sanchez, D. S.; Belopolski, I.; Cochran, T. A.; Xu, X.; Yin, J.-X.; Chang, G.; Xie, W.; Manna, K.; Suss, V.; Huang, C.-Y.; Alidoust, N.; Multer, D.; Zhang, S. S.; Shumiya, N.; Wang, X.; Wang, G.-Q.; Chang, T.-R.; Felser, C.; Xu, S.-Y.; Jia, S.; Lin, H.; Hasan, M. Z. Nature 2019, 567, 500. |
[4] | Berova, N.; Di Bari, L.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914. |
[5] | Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039. |
[6] | (a) Ostroverkhova, O. Chem. Rev. 2016, 116, 13279; |
[6] | (b) Shirota, Y. J. Mater. Chem. 2000, 10, 1. |
[7] | (a) Schadt, M. Annu. Rev. Mater. Sci. 1997, 27, 305; |
[7] | (b) Carey, J. E.; Crouch, C. H.; Shen, M. Y.; Mazur, E. Opt. Lett. 2005, 30, 1773; |
[7] | (c) Kim, D.-Y. J. Korean Phys. Soc. 2006, 49, S505; |
[7] | (d) Sherson, J. F.; Krauter, H.; Olsson, R. K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E. S. Nature 2006, 443, 557. |
[8] | Naaman, R.; Paltiel, Y.; Waldeck, D. H. Nat. Rev. Chem. 2019, 3, 250. |
[9] | (a) Zhang, D.-W.; Li, M.; Chen, C.-F. Chem. Soc. Rev. 2020, 49, 1331; |
[9] | (b) Liu, J.; Zhang, Y.; Phan, H.; Sharenko, A.; Moonsin, P.; Walker, B.; Promarak, V.; Nguyen, T. Q. Adv. Mater. 2013, 25, 3645. |
[10] | (a) Lermo, E. R.; Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W. Chem. Commun. 1999, 9, 791; |
[10] | (b) Geng, Y. H.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen, S. H. J. Am. Chem. Soc. 2002, 124, 8337; |
[10] | (c) Craig, M. R.; Jonkheijm, P.; Meskers, S. C. J.; Schenning, A.; Meijer, E. W. Adv. Mater. 2003, 15, 1435. |
[11] | (a) Yang, Y.; Rice, B.; Shi, X.; Brandt, J. R.; da Costa, R. C.; Hedley, G. J.; Smilgies, D.-M.; Frost, J. M.; Samuel, I. D. W.; Otero-de-la-Roza, A.; Johnson, E. R.; Jelfs, K. E.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. ACS Nano 2017, 11, 8329; |
[11] | (b) Hatakeyama, T.; Hashimoto, S.; Oba, T.; Nakamura, M. J. Am. Chem. Soc. 2012, 134, 19600. |
[12] | Henson, Z. B.; Muellen, K.; Bazan, G. C. Nature Chem. 2012, 4, 699. |
[13] | Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210. |
[14] | (a) Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T. M. Adv. Mater. 2007, 19, 688; |
[14] | (b) Li, H.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. J. Am. Chem. Soc. 2012, 134, 2760. |
[15] | Kulkarni, C.; van Son, M. H. C.; Di Nuzzo, D.; Meskers, S. C. J.; Palmans, A. R. A.; Meijer, E. W. Chem. Mater. 2019, 31, 6633. |
[16] | Stolte, M.; Suraru, S.-L.; Diemer, P.; He, T.; Burschka, C.; Zschieschang, U.; Klauk, H.; Würthner, F. Adv. Funct. Mater. 2016, 26, 7415. |
[17] | He, T.; Leowanawat, P.; Burschka, C.; Stepanenko, V.; Stolte, M.; Würthner, F. Adv. Mater. 2018, 30, 1804032. |
[18] | Chen, M.; Li, J.; Jiao, X.; Yang, X.; Wu, W.; McNeill, C. R.; Gao, X. J. Mater. Chem. C 2019, 7, 2659. |
[19] | Xie, J.; Zhou, Q. Acta Chim. Sinica 2014, 72, 778. (in Chinese) |
[19] | (谢建华, 周其林, 化学学报, 2014, 72, 778.) |
[20] | Chen, M.; Jiao, X.; Li, J.; Wu, W.; Xin, H.; McNeill, C. R.; Gao, X. Langmuir 2019, 35, 6188. |
[21] | Zhuang, F. D.; Yang, J. H.; Sun, Z. H.; Zhang, P. F.; Chen, Q. R.; Wang, J. Y.; Pei, J. Chinese J. Chem. 2021, 39, 909. |
[22] | Zerdan, R. B.; Shewmon, N. T.; Zhu, Y.; Mudrick, J. P.; Chesney, K. J.; Xue, J.; Castellano, R. K. Adv. Funct. Mater. 2014, 24, 5993. |
[23] | Ikai, T.; Kojima, R.; Katori, S.; Yamamoto, T.; Kuwabara, T.; Maeda, K.; Takahashi, K.; Kanoh, S. Polymer 2015, 56, 171. |
[24] | Sugawara, K.; Nakamura, N.; Yamane, Y.; Hayase, S.; Nokami, T.; Itoh, T. Green Energy Environ. 2016, 1, 149. |
[25] | Umeyama, T.; Shibata, S.; Igarashi, K.; Takahara, S.; Higashino, T.; Seki, S.; Imahori, H. Chem. Lett. 2017, 46, 1001. |
[26] | Josse, P.; Favereau, L.; Shen, C.; Dabos-Seignon, S.; Blanchard, P.; Cabanetos, C.; Crassous, J. Chem. Eur. J. 2017, 23, 6277. |
[27] | Brandt, J. R.; Wang, X.; Yang, Y.; Campbell, A. J.; Fuchter, M. J. J. Am. Chem. Soc. 2016, 138, 9743. |
[28] | (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673; |
[28] | (b) Aspinall, H. C. Chem. Rev. 2002, 102, 1807; |
[28] | (c) Bunzli, J. C. G.; Piguet, C. Chem. Rev. 2002, 102, 1897; |
[28] | (d) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496. |
[29] | Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Chem. Rev. 2016, 116, 13752. |
[30] | LangeveldVoss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 4908. |
[31] | Chen, S. H.; Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.; Tsutsui, T.; Blanton, T. N. Nature 1999, 397, 506. |
[32] | Lee, D.; Jin, Y.-J.; Kim, H.; Suzuki, N.; Fujiki, M.; Sakaguchi, T.; Kim, S. K.; Lee, W.-E.; Kwak, G. Macromolecules 2012, 45, 5379. |
[33] | Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150. (in Chinese) |
[33] | (李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.) |
[34] | Liu, J.; Su, H.; Meng, L.; Zhao, Y.; Deng, C.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X.; Wu, H.; Wong, K. S.; Tang, B. Z. Chem. Sci. 2012, 3, 2737. |
[35] | Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 4978. |
[36] | Yang, D.; Duan, P.; Zhang, L.; Liu, M. Nat. Commun. 2017, 8, 15727. |
[37] | Han, J.; Yang, D.; Jin, X.; Jiang, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 7013. |
[38] | Yang, D.; Duan, P.; Liu, M. Angew. Chem. Int. Ed. 2018, 57, 9357. |
[39] | Liu, B.; Bockmann, M.; Jiang, W.; Doltsinis, N. L.; Wang, Z. J. Am. Chem. Soc. 2020, 142, 7092. |
[40] | (a) Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2016, 138, 10184; |
[40] | (b) Liu, G.; Koch, T.; Li, Y.; Doltsinis, N. L.; Wang, Z. Angew. Chem. Int. Ed. 2019, 58, 178; |
[40] | (c) Meng, D.; Liu, G.; Xiao, C.; Shi, Y.; Zhang, L.; Jiang, L.; Baldridge, K. K.; Li, Y.; Siegel, J. S.; Wang, Z. J. Am. Chem. Soc. 2019, 141, 5402. |
[41] | Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. J. Am. Chem. Soc. 2008, 130, 13814. |
[42] | (a) Zinna, F.; Giovanella, U.; Di Bari, L. Adv. Mater. 2015, 27, 1791; |
[42] | (b) Feuillastre, S.; Pauton, M.; Gao, L.; Desmarchelier, A.; Riives, A. J.; Prim, D.; Tondelier, D.; Geffroy, B.; Muller, G.; Clavier, G.; Pieters, G. J. Am. Chem. Soc. 2016, 138, 3990. |
[43] | Peeters, E.; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H.; Meijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909. |
[44] | Oda, M.; Nothofer, H. G.; Lieser, G.; Scherf, U.; Meskers, S. C. J.; Neher, D. Adv. Mater. 2000, 12, 362. |
[45] | Di Nuzzo, D.; Kulkarni, C.; Zhao, B.; Smolinsky, E.; Tassinar, F.; Meskers, S. C. J.; Naaman, R.; Meijer, E. W.; Friend, R. H. ACS Nano 2017, 11, 12713. |
[46] | (a) Yang, L.; Zhang, Y.; Zhang, X.; Li, N.; Quan, Y.; Cheng, Y. Chem. Commun. 2018, 54, 9663; |
[46] | (b) Wang, Y. F.; Li, M.; Teng, J. M.; Zhou, H. Y.; Zhao, W. L.; Chen, C. F. Angew. Chem. Int. Ed. 2021, 60, 23619. |
[47] | Yang, Y.; da Costa, R. C.; Smilgies, D.-M.; Campbell, A. J.; Fuchter, M. J. Adv. Mater. 2013, 25, 2624. |
[48] | Wan, L.; Wade, J.; Salerno, F.; Arteaga, O.; Laidlaw, B.; Wang, X.; Penfold, T.; Fuchter, M. J.; Campbell, A. J. ACS Nano 2019, 13, 8099. |
[49] | Jung, J.-H.; Lee, D.-M.; Kim, J.-H.; Yu, C.-J. J. Mater. Chem. C 2018, 6, 726. |
[50] | Li, T.-Y.; Jing, Y.-M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z.; Zheng, Y.-X.; Zuo, J.-L. Sci. Rep. 2015, 5, 14912. |
[51] | Zhang, X.; Zhang, Y.; Zhang, H.; Quan, Y.; Li, Y.; Cheng, Y.; Ye, S. Org. Lett. 2019, 21, 439. |
[52] | Zhang, Y.; Zhang, X.; Zhang, H.; Xiao, Y.; Quan, Y.; Ye, S.; Cheng, Y. J. Phys. Chem. C 2019, 123, 24746. |
[53] | Imagawa, T.; Hirata, S.; Totani, K.; Watanabe, T.; Vacha, M. Chem. Commun. 2015, 51, 13268. |
[54] | Li, M.; Li, S.-H.; Zhang, D.; Cai, M.; Duan, L.; Fung, M.-K.; Chen, C.-F. Angew. Chem. Int. Ed. 2018, 57, 2889. |
[55] | Zhang, Y. P.; Liang, X.; Luo, X. F.; Song, S. Q.; Li, S.; Wang, Y.; Mao, Z. P.; Xu, W. Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y. Angew. Chem. Int. Ed. 2021, 60, 8435. |
[56] | Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Appl. Phys. Lett. 2011, 98, 165208. |
[57] | Ma, W.; Xu, L.; de Moura, A. F.; Wu, X.; Kuang, H.; Xu, C.; Kotov, N. A. Chem. Rev. 2017, 117, 8041. |
[58] | Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Nature Photon. 2013, 7, 634. |
[59] | Shi, W.; Salerno, F.; Ward, M. D.; Santana-Bonilla, A.; Wade, J.; Hou, X.; Liu, T.; Dennis, T. J. S.; Campbell, A. J.; Jelfs, K. E.; Fuchter, M. J. Adv. Mater. 2021, 33, 2004115. |
[60] | Shang, X.; Song, I.; Ohtsu, H.; Lee, Y. H.; Zhao, T.; Kojima, T.; Jung, J. H.; Kawano, M.; Oh, J. H. Adv. Mater. 2017, 29, 1605828. |
[61] | Shang, X.; Song, I.; Lee, J. H.; Choi, W.; Ahn, J.; Ohtsu, H.; Kim, J. C.; Koo, J. Y.; Kwak, S. K.; Oh, J. H. ACS Nano 2020, 14, 14146. |
[62] | Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J. H.; Lin, J. Nat. Commun. 2021, 12, 142. |
[63] | Cheng, J. J.; Ge, F.; Zhang, C.; Kuai, Y.; Hou, P. H.; Xiang, Y. F.; Zhang, D. G.; Qiu, L. Z.; Zhang, Q. J.; Zou, G. J. Mater. Chem. C 2020, 8, 9271. |
[64] | Han, H.; Lee, Y. J.; Kyhm, J.; Jeong, J. S.; Han, J.-H.; Yang, M. K.; Lee, K. M.; Choi, Y.; Yoon, T.-H.; Ju, H.; Ahn, S.-K.; Lim, J. A. Adv. Funct. Mater. 2020, 30, 2006236. |
[65] | Gilot, J.; Abbel, R.; Lakhwani, G.; Meijer, E. W.; Schenning, A. P. H. J.; Meskers, S. C. J. Adv. Mater. 2010, 22, E131. |
[66] | Schulz, M.; Balzer, F.; Scheunemann, D.; Arteaga, O.; Luetzen, A.; Meskers, S. C. J.; Schiek, M. Adv. Funct. Mater. 2019, 29, 1900684. |
[67] | Kim, N. Y.; Kyhm, J.; Han, H.; Kim, S. J.; Ahn, J.; Hwang, D. K.; Jang, H. W.; Ju, B.-K.; Lim, J. A. Adv. Funct. Mater. 2019, 29, 1808668. |
[68] | Wang, Z.; Gao, M.; Hao, X.; Qin, W. Appl. Phys. Lett. 2020, 116, 053301. |
[69] | Ward, M. D.; Wade, J.; Shi, X.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. Adv. Opt. Mater. 2022, 10, 2101044. |
[70] | Liu, L.; Yang, Y.; Wang, Y.; Adil, M. A.; Zhao, Y.; Zhang, J.; Chen, K.; Deng, D.; Zhang, H.; Amin, K.; Wu, Y.; Zhang, Y.; Wei, Z. ACS Mater. Lett. 2022, 4, 401. |
/
〈 |
|
〉 |