Review

Inorganic Coatings and Films for Antibacterial and Antivirus Functionality

  • Jie Wang ,
  • Yuqing Ye ,
  • Yuan Li ,
  • Xiaojie Ma ,
  • Bo Wang
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2022-04-20

  Online published: 2022-06-15

Supported by

National Natural Science Foundation of China(22076011); National Natural Science Foundation of China(21625102); National Natural Science Foundation of China(21971017); National Natural Science Foundation of China(21801017); National Key Research and Development Program of China(2020YFB1506300); Beijing Institute of Technology Research Fund Program

Abstract

The global pandemic of COVID-19 has caused serious harm to people’s healthy life and the normal operation of society. People have paid more attention to the prevention and control of microbial contamination such as bacteria and viruses. Blocking the spread of disease-causing microorganisms through indirect contact with humans through contaminated surfaces, or avoiding direct contact with them, is the primary way to protect us from harm. Current solutions include designing antibacterial and antiviral surface coatings and developing personal protective equipment made from self-cleaning films or fabrics. In this paper, the work of several widely studied metals, metal oxides, metal organic framework materials, etc. with antibacterial and antiviral functionality is reviewed, their microbial inactivation mechanisms as well as performance are summarized and discussed. In the end, the future perspectives on emerging research directions and challenges in the development of antibacterial and antiviral coatings and films are presented.

Cite this article

Jie Wang , Yuqing Ye , Yuan Li , Xiaojie Ma , Bo Wang . Inorganic Coatings and Films for Antibacterial and Antivirus Functionality[J]. Acta Chimica Sinica, 2022 , 80(9) : 1338 -1350 . DOI: 10.6023/A22040181

References

[1]
Hart A. M. JNP-J Nurse Pract. 2019, 15, 429.
[2]
Sohrabi C.; Alsafi Z.; O'Neill N.; Khan M.; Kerwan A.; Al-Jabir A.; Iosifidis C.; Agha R. Int. J. Surg. 2020, 76, 71.
[3]
Kyriacou D. N.; Adamski A.; Khardori N. Infect. Dis. Clin. N. Am. 2006, 20, 227.
[4]
Córdoba-Lanús E.; García-Pérez O.; Cazorla-Rivero S.; Rodríguez-Esparragón F.; Piñero J.-E.; Clavo B.; Lorenzo- Morales J. BMC Infect Dis. 2021, 21, 1169
[5]
Otter J. A.; Donskey C.; Yezli S.; Douthwaite S.; Goldenberg S. D.; Weber D. J. J Hosp. Infect. 2016, 92, 235.
[6]
Ceylan R. F.; Ozkan B.; Mulazimogullari E. Eur. J. Health Econ. 2020, 21, 817.
[7]
Dymecka J. Neuropsychiatr. i Neuropsychol. 2021, 16, 1.
[8]
Gupta R.; Prasad A.; Babu S.; Yadav G. Entropy Switz. 2021, 23, 626.
[9]
Saran S.; Gurjar M.; Baronia A. K.; Lohiya A.; Azim A.; Poddar B.; Rao N. S. Expert Rev. Med. Devic. 2020, 17, 1265.
[10]
Sohrabi C.; Alsafi Z.; O'Neill N.; Khan M.; Kerwan A.; Al-Jabir A.; Iosifidis C.; Agha R. Int. J. Surg. 2020, 76, 71.
[11]
Ip V.; Özelsel T. J. P.; Sondekoppam R. V.; Tsui B. C. H. Can. J. Anesth. 2020, 67, 1070.
[12]
Siwal S. S.; Chaudhary G.; Saini A. K.; Kaur H.; Saini V.; Mokhta S. K.; Chand R.; Chandel U. K.; Christie G.; Thakur V. K. J. Environ. Chem. Eng. 2021, 9, 106284.
[13]
Syed D. S.; Malik M. S.; Ominu-Evbota K. Int. J. Surg. 2020, 79, 192.
[14]
Li Z.; Bai H.; Jia S.; Yuan H.; Gao L.-H.; Liang H. Mater. Chem. Front. 2021, 5, 1236.
[15]
Wang L.; Hu C.; Shao L. Int. J. Nanomed. 2017, 12, 1227.
[16]
Huang Y.; Pappas H. C.; Zhang L.; Wang S.; Cai R.; Tan W.; Wang S.; Whitten D. G.; Schanze K. S. Chem. Mater. 2017, 29, 6389.
[17]
Xu Q.; He P.; Wang J.; Chen H.; Lv F.; Liu L.; Wang S.; Yoon J. Dyes Pigments 2019, 160, 519.
[18]
Imani S. M.; Ladouceur L.; Marshall T.; Maclachlan R.; Soleymani L.; Didar T. F. ACS Nano 2020, 14, 12341.
[19]
Weber D. J.; Rutala W. A. Am. J. Infect. Control, 2013, 41, S31.
[20]
Samanovic M. I.; Ding C.; Thiele D. J.; Darwin K. H. Cell Host Microbe 2012, 11, 106.
[21]
Liu Y.; Xu X.; Xia Q.; Yuan G.; He Q.; Cui Y. Chem. Commun. 2010, 46, 2608.
[22]
Pulido M. D.; Parrish A. R. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2003, 533, 227.
[23]
Galdiero S.; Falanga A.; Vitiello M.; Cantisani M.; Marra V.; Galdiero M. Molecules 2011, 16, 8894.
[24]
Palza H. Int. J. Mol. Sci. 2015, 16, 2099.
[25]
Qi Y.; Ren S.; Che Y.; Ye J.; Ning G. Acta Chim. Sinica 2020, 78, 613.(in Chinese)
[25]
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.)
[26]
Soni V.; Khosla A.; Singh P.; Nguyen V.-H.; Le Q. V.; Selvasembian R.; Hussain C. M.; Thakur S.; Raizada P. J. Environ. Manage. 2022, 308, 114617.
[27]
Huang Y.-B.; Liang J.; Wang X.-S.; Cao R. Chem. Soc. Rev. 2017, 46, 126.
[28]
Sunada K.; Minoshima M.; Hashimoto K. J. Hazard. Mater. 2012, 235-236, 265.
[29]
Borkow G. Curr. Chem. Biol. 2012, 6, 93.
[30]
Bleichert P.; Espírito Santo C.; Hanczaruk M.; Meyer H.; Grass G. BioMetals 2014, 27, 1179.
[31]
Noyce J. O.; Michels H.; Keevil C. W. Appl. Environ. Microbiol. 2007, 73, 2748.
[32]
Champagne V.; Sundberg K.; Helfritch D. Coatings 2019, 9, 257.
[33]
Minoshima M.; Lu Y.; Kimura T.; Nakano R.; Ishiguro H.; Kubota Y.; Hashimoto K.; Sunada K. J. Hazard. Mater. 2016, 312, 1-7.
[34]
Samal S. K.; Warnes S. L.; Keevil C. W. PLoS One 2013, 8, e75017.
[35]
Warnes S. L.; Little Z. R.; Keevil C. W.; Colwell R. mBio 2015, 6, e01697.
[36]
Borkow G.; Gabbay J.; FASEB J. 2004, 18, 1728.
[37]
Borkow G.; Sidwell R. W.; Smee D. F.; Barnard D. L.; Morrey J. D.; Lara-Villegas H. H.; Shemer-Avni Y.; Gabbay J. Antimicrob. Agents Chemother. 2007, 51, 2605.
[38]
Tavis J. E.; Borkow G.; Zhou S. S.; Page T.; Gabbay J. PLoS One 2010, 5, e11295.
[39]
Zhang S.; Dong H.; He R.; Wang N.; Zhao Q.; Yang L.; Qu Z.; Sun L.; Chen S.; Ma J.; Li J. Int. J. Biol. Macromol. 2022, 207, 100
[40]
Fang Y.; Ma Y.; Zheng M.; Yang P.; Asiri A. M.; Wang X. Coordin. Chem. Rev. 2018, 373, 83.
[41]
Jiao L.; Seow J. Y. R.; Skinner W. S.; Wang Z. U.; Jiang H.-L. Mater. Today 2019, 27, 43.
[42]
Freund R.; Canossa S.; Cohen S. M.; Yan W.; Deng H.; Guillerm V.; Eddaoudi M.; Madden D. G.; Fairen‐Jimenez D.; Lyu H.; Macreadie L. K.; Ji Z.; Zhang Y.; Wang B.; Haase F.; Wöll C.; Zaremba O.; Andreo J.; Wuttke S.; Diercks C. S. Angew. Chem. Int. Ed. 2021, 60, 23946.
[43]
Zhang Y.-B.; Furukawa H.; Ko N.; Nie W.; Park H. J.; Okajima S.; Cordova K. E.; Deng H.; Kim J.; Yaghi O. M. J. Am. Chem. Soc. 2015, 137, 2641.
[44]
Xiao J. D.; Jiang H. L. Acc. Chem. Res. 2019, 52, 356.
[45]
Xu C.; Pan Y.; Wan G.; Liu H.; Wang L.; Zhou H.; Yu S.-H.; Jiang H.-L. J. Am. Chem. Soc. 2019, 141, 19110.
[46]
Xu C.; Liu H.; Li D.; Su J.-H.; Jiang H.-L. Chem. Sci. 2018, 9, 3152.
[47]
Horcajada P.; Gref R.; Baati T.; Allan P. K.; Maurin G.; Couvreur P.; Ferey G.; Morris R. E.; Serre C. Chem. Rev. 2012, 112, 1232.
[48]
Yang J.; Yang Y.-W. Small 2020, 16, 1906846.
[49]
Tsotsalas M.; Liu J.; Tettmann B.; Grosjean S.; Shahnas A.; Wang Z.; Azucena C.; Addicoat M.; Heine T.; Lahann J.; Overhage J.; Bräse S.; Gliemann H.; Wöll C. J. Am. Chem. Soc. 2013, 136, 8.
[50]
Rodriguez H. S.; Hinestroza J. P.; Ochoa-Puentes C.; Sierra C. A.; Soto C. Y. J. Appl. Polym. Sci. 2014, 131, 40815.
[51]
Duan C.; Meng J.; Wang X.; Meng X.; Sun X.; Xu Y.; Zhao W.; Ni Y. Carbohydr. Polym. 2018, 193, 82.
[52]
Li Y.; Pi Q.-M.; You H.-H.; Li J.-Q.; Wang P.-C.; Yang X.; Wu Y. RSC Adv. 2018, 8, 18272.
[53]
Kim H.-E.; Lee H.-J.; Kim M. S.; Kim T.; Lee H.; Kim H.-H.; Cho M.; Hong S.-W.; Lee C. Environ. Sci. Technol. 2019, 53, 2679.
[54]
Park S.; Park H. H.; Kim S. Y.; Kim S. J.; Woo K.; Ko G.; Schottel J. L. Appl. Environ. Microbiol. 2014, 80, 2343.
[55]
Godoy-Gallardo M.; Eckhard U.; Delgado L. M.; de Roo Puente, Y. J. D.; Hoyos-Nogués, M.; Gil, F. J.; Perez, R. A. Bioact. Mater. 2021, 6, 4470.
[56]
Bondarenko O. M.; Sihtmäe M.; Kuzmičiova J.; Ragelienė L.; Kahru A.; Daugelavičius R. Int. J. Nanomedicine 2018, 13, 6779.
[57]
Ahmed B.; Hashmi A.; Khan M. S.; Musarrat J. Adv. Powder Technol. 2018, 29, 1601.
[58]
Stohs S. J.; Bagchi D. Free Radical Biol. Med. 1995, 18, 321.
[59]
Dakal T. C.; Kumar A.; Majumdar R. S.; Yadav V. Front. Microbiol. 2016, 7, 1.
[60]
Speshock J. L.; Murdock R. C.; Braydich-Stolle L. K.; Schrand A. M.; Hussain S. M.; J. Nanobiotechnol. 2010, 8, 19.
[61]
Sawtell N. M.; Orlowski P.; Tomaszewska E.; Gniadek M.; Baska P.; Nowakowska J.; Sokolowska J.; Nowak Z.; Donten M.; Celichowski G.; Grobelny J.; Krzyzowska M. PLoS One 2014, 9, e104113.
[62]
Hodek J.; Zajícová V.; Lovětinská-Šlamborová I.; Stibor I.; Müllerová J.; Weber J. BMC Microbiol. 2016, 16, 56.
[63]
Rogers J. V.; Parkinson C. V.; Choi Y. W.; Speshock J. L.; Hussain S. M. Nanoscale Res. Lett. 2008, 3, 129.
[64]
Nguyen V. Q.; Ishihara M.; Kinoda J.; Hattori H.; Nakamura S.; Ono T.; Miyahira Y.; Matsui T. J. Nanobiotechnol. 2014, 12, 49.
[65]
Zodrow K.; Brunet L.; Mahendra S.; Li D.; Zhang A.; Li Q.; Alvarez P. J. J. Water Res. 2009, 43, 715.
[66]
De Gusseme B.; Hennebel T.; Christiaens E.; Saveyn H.; Verbeken K.; Fitts J. P.; Boon N.; Verstraete W. Water Res. 2011, 45, 1856.
[67]
Martínez-Abad A.; Ocio M. J.; Lagarón J. M.; Sánchez G. Int. J. Food Microbiol. 2013, 162, 89.
[68]
Castro-Mayorga J. L.; Randazzo W.; Fabra M. J.; Lagaron J. M.; Aznar R.; Sa?nchez G. LWT-Food Sci. Technol. 2017, 79, 503.
[69]
Seyedpour S. F.; Rahimpour A.; Najafpour G. J. Membr. Sci. 2019, 573, 257.
[70]
Tan Z.-K.; Gong J.-L.; Fang S.-Y.; Li J.; Cao W.-C.; Chen Z.-P. Appl. Surf. Sci. 2022, 590, 153059.
[71]
Kugler R.; Bouloussa O.; Rondelez F. Microbiology. 2005, 151, 1341.
[72]
Murata H.; Koepsel R. R.; Matyjaszewski K.; Russell A. J. Biomaterials 2007, 28, 4870.
[73]
Li W.; Zhou S.; Gao S.; Chen S.; Huang M.; Cao R. Adv. Mater. Interfaces 2015, 2, 1400405.
[74]
Chen J.; Meng T.; Wu L.; Shi H.; Yang F.; Sun J.; Yang X. Acta Chim. Sinica 2022, 80, 110.(in Chinese)
[74]
(陈敬煌, 孟天, 武烈, 石恒冲, 杨帆, 孙健, 杨秀荣, 化学学报, 2022, 80, 110.)
[75]
Warnes S. L.; Summersgill E. N.; Keevil C. W.; Elkins C. A. Appl. Environ. Microbiol. 2015, 81, 1085.
[76]
Mishra Y. K.; Adelung R.; Röhl C.; Shukla D.; Spors F.; Tiwari V. Antiviral Res. 2011, 92, 305.
[77]
Yuan Y.; Zhang Y. Nanomedicine 2017, 13, 2199.
[78]
Yuan Y.; Wu H.; Lu H.; Zheng Y.; Ying J. Y.; Zhang Y. Chem. Commun. 2019, 55, 699.
[79]
Gu Q.; Ng T. C. A.; Sun Q.; Elshahawy A. M. K.; Lyu Z.; He Z.; Zhang L.; Ng H. Y.; Zeng K.; Wang J. RSC Adv. 2019, 9, 1591.
[80]
Li P.; Li J.; Feng X.; Li J.; Hao Y.; Zhang J.; Wang H.; Yin A.; Zhou J.; Ma X.; Wang B. Nat. Commun. 2019, 10, 2177.
[81]
Maeda K.; Domen K. J. Phys. Chem. C 2007, 111, 7851.
[82]
Byrne J.; Dunlop P.; Hamilton J.; Fernández-Ibáñez P.; Polo-López I.; Sharma P.; Vennard A. Molecules 2015, 20, 5574.
[83]
Kangwansupamonkon W.; Lauruengtana V.; Surassmo S.; Ruktanonchai U. Nanomedicine 2009, 5, 240.
[84]
Krumdieck S. P.; Boichot R.; Gorthy R.; Land J. G.; Lay S.; Gardecka A. J.; Polson M. I. J.; Wasa A.; Aitken J. E.; Heinemann J. A.; Renou G.; Berthomé G.; Charlot F.; Encinas T.; Braccini M.; Bishop C. M. Sci. Rep. 2019, 9, 1883.
[85]
Khater M. S.; Kulkarni G. R.; Khater S. S.; Gholap H.; Patil R. Mater. Res. Express 2020, 7, 035005.
[86]
Sohm B.; Immel F.; Bauda P.; Pagnout C. Proteomics 2015, 15, 98.
[87]
Nakano R.; Hara M.; Ishiguro H.; Yao Y.; Ochiai T.; Nakata K.; Murakami T.; Kajioka J.; Sunada K.; Hashimoto K.; Fujishima A.; Kubota Y. Catalysts 2013, 3, 310.
[88]
Ishiguro H.; Nakano R.; Yao Y.; Kajioka J.; Fujishima A.; Sunada K.; Minoshima M.; Hashimoto K.; Kubota Y. Photochem. Photobiol. Sci. 2011, 10, 1825.
[89]
Park G. W.; Cho M.; Cates E. L.; Lee D.; Oh B.-T.; Vinjé J.; Kim J.-H. J. Photochem. Photobiol., B 2014, 140, 315.
[90]
Hou X.; Ma H.; Liu F.; Deng J.; Ai Y.; Zhao X.; Mao D.; Li D.; Liao B. J. Hazard. Mater. 2015, 299, 59.
[91]
Wang J.; Zhang C.; Yang Y.; Fan A.; Chi R.; Shi J.; Zhang X. Appl. Surf. Sci. 2019, 494, 708.
[92]
Moongraksathum B.; Chien M.-Y.; Chen Y.-W. J. Nanosci. Nanotechnol. 2019, 19, 7356.
[93]
Rao X.; Du L.; Zhao J. J.; Tan X. D.; Fang Y. X.; Xu L. Q.; Zhang Y. P. J. Mater. Sci. Technol. 2022, 118, 35.
[94]
Choi S.-Y.; Cho B. Virus Res. 2018, 248, 71.
[95]
Kozlova E. A.; Safatov A. S.; Kiselev S. A.; Marchenko V. Y.; Sergeev A. A.; Skarnovich M. O.; Emelyanova E. K.; Smetannikova M. A.; Buryak G. A.; Vorontsov A. V. Environ. Sci. Technol. 2010, 44, 5121.
[96]
Mehtar S.; Chalkley L.; Marais F. J. Hosp. Infect. 2010, 74, 80e95.
[97]
Mikolay A.; Huggett S.; Tikana L.; Grass G.; Braun J.; Nies D. H. Appl. Microbiol. Biotechnol. 2010, 87, 1875.
[98]
Karpanen T. J.; Casey A. L.; Lambert P. A.; Cookson B. D.; Nightingale P.; Miruszenko L.; Elliott T. S. J. Infect. Cont. Hosp. Ep. 2015, 33, 3.
[99]
Foster H. A.; Ditta I. B.; Varghese S.; Steele A. Appl. Microbiol. Biotechnol. 2011, 90, 1847.
[100]
Chen X.; Schluesener H. J. Toxicol. Lett. 2008, 176, 1.
[101]
Chaloupka K.; Malam Y.; Seifalian A. M. Trends Biotechnol. 2010, 28, 580.
Outlines

/