Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production
Received date: 2022-04-21
Online published: 2022-06-27
Supported by
National Natural Science Foundation of China(51761145043); National Natural Science Foundation of China(21975153); Strategic Priority Research Program of Chinese Academy of Sciences(XDB20020000); Shanghai Institute of Organic Chemistry(sioczz202123); Zhengzhou University of Technology.
Owing to their features of easy preparation, low cost and good stability, graphitic carbon nitrides (GCNs) have attracted increasing attention in the field of photocatalytic water-splitting hydrogen production for green and renewable energy as an alternative to fossil. However, their narrow light absorption spectra and low efficiencies in photogenerated charge separation and transfer processes restrict their photocatalytic performance. In this work, 4,4'-(benzo[c][1,2,5]thiadiazole- 4,7-diyl)dibenzaldehyde (BTD) was used to conjugated crosslink and surface modify GCN via acid-catalyzed Shiff-base condensation reaction at 260 ℃, affording four BTD-modified graphitic carbon nitride materials denoted as GCN-BTDx (x represents the amount of BTD in mg used in the reaction with 100 mg GCN and equals to 20, 40, 80, and 160). Elemental analysis, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, Mott-Schottky analysis, electrochemical impedance spectroscopy and photocurrent responsive measurements were used to characterize and investigate the synthesized materials. Using these materials as photocatalysts, triethanolamine as electron sacrificial agent, Pt nanoparticle as cocatalyst, visible light-driven photocatalytic hydrogen production from water have been studied. It was found the BTD modification can extend light absorption spectrum, tune energy band structure, and reduce interfacial charge transfer resistance, and thus finally improve the material photocatalytic hydrogen production performance. Among the family, GCN-BTD160 behaved the best with the highest hydrogen evolution rate (863 μmol•g–1•h–1) and excellent stability and recyclability. Its hydrogen evolution rate is more than 2 folds as that of unmodified GCN. Moreover, GCN-BTD160 exhibited good visible light responsibility, with apparent quantum yields of 2.4% at 420 nm, 1.8% at 450 nm, and 1.6% at 500 nm. Therefore, this work paves a new method in graphitic carbon nitride modification for photocatalytic performance improvement.
Zhongshu Xie , Zhongxin Xue , Ziwen Xu , Qian Li , Hongyu Wang , Wei-Shi Li . Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production[J]. Acta Chimica Sinica, 2022 , 80(9) : 1231 -1237 . DOI: 10.6023/A22040183
[1] | Dai L.; Chang D. W.; Baek J.-B.; Lu W. Small 2012, 8, 1122. |
[2] | Wang R.; Zou Y.; Hong C.; Xu M.; Ling L. Acta Chim. Sinica 2021, 79, 932.(in Chinese) |
[2] | (王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.) |
[3] | (a) Guesh K.; Caiuby C. A. D.; Mayoral Á.; Díaz-García M.; Díaz I.; Sanchez-Sanchez M. Cryst. Growth Des. 2017, 17, 1806. |
[3] | (b) Santaclara J. G.; Olivos-Suarez A. I.; du Fosse I.; Houtepen A.; Hunger J.; Kapteijn F.; Gascon J.; van der Veen M. A. Faraday Dis. 2017, 201, 71. |
[3] | (c) Zhang G.; Liu B.; Wang T.; Gong J. Chin. J. Chem. 2021, 39, 1450. |
[4] | (a) Bard Allen J. Science 1980, 207, 139. |
[4] | (b) Hoffmann M. R.; Martin S. T.; Choi W.; Bahnemann D. W. Chem. Rev. 1995, 95, 69. |
[5] | Fujishima A.; Honda K. Nature 1972, 238, 37. |
[6] | (a) Wei J.; Wei S.; Chang N.; Wang H.; Zhang J. Nanotechnology 2020, 32, 105706. |
[6] | (b) López-Vásquez A.; Delgado-Niño P.; Salas- Siado D. Environ. Sci. Pollut. Res. 2019, 26, 4202. |
[7] | (a) Audichon T.; Napporn T. W.; Canaff C.; Morais C.; Comminges C.; Kokoh K. B. J. Phys. Chem. C 2016, 120, 2562. |
[7] | (b) Pi Y.; Zhang N.; Guo S.; Guo J.; Huang X. Nano Lett. 2016, 16, 4424. |
[8] | (a) Nohra B.; El Moll H.; Rodriguez Albelo L. M.; Mialane P.; Marrot J.; Mellot-Draznieks C.; O'Keeffe M.; Ngo Biboum R.; Lemaire J.; Keita B.; Nadjo L.; Dolbecq A. J. Am. Chem. Soc. 2011, 133, 13363. |
[8] | (b) Li Y.; Xu H.; Ouyang S.; Ye J. Phys. Chem. Chem. Phys. 2016, 18, 7563. |
[8] | (c) Song Y.; Cho D.; Venkateswarlu S.; Yoon M. RSC Adv. 2017, 7, 10592. |
[8] | (d) Wu Q.; Zhang C.; Sun K.; Jiang H.-L. Acta Chim. Sinica 2020, 78, 688.(in Chinese) |
[8] | (吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.) |
[9] | (a) Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment S.; Zboril R.; Schmuki P. ACS Catal. 2019, 9, 345. |
[9] | (b) Paracchino A.; Laporte V.; Sivula K.; Grätzel M.; Thimsen E. Nat. Mater. 2011, 10, 456. |
[9] | (c) Pan L.; Kim J. H.; Mayer M. T.; Son M.-K.; Ummadisingu A.; Lee J. S.; Hagfeldt A.; Luo J.; Grätzel M. Nat. Catal. 2018, 1, 412. |
[9] | (d) Yu J.; Li Q.; Liu S.; Jaroniec M. Chem. Eur. J. 2013, 19, 2433. |
[9] | (e) Yu J.; Low J.; Xiao W.; Zhou P.; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839. |
[9] | (f) Jang E. S.; Won J.-H.; Hwang S.-J.; Choy J.-H. Adv. Mater. 2006, 18, 3309. |
[9] | (g) Wang T.; Li Y.; Peng S.; Lü G.; Li S. Acta Chim. Sinica 2005, 63, 797.(in Chinese) |
[9] | (王添辉, 李越湘, 彭绍琴, 吕功煊, 李树本, 化学学报, 2005, 63, 797.) |
[9] | (h) Liu L.-N.; Li Y.-P.; Khalil M.; Xu Z.-W.; Xie G.; Zhang X.; Li J.; Li W.-S. Chin. J. Chem. 2020, 38, 1663. |
[10] | Chen X.; Shen S.; Guo L.; Mao S. S. Chem. Rev. 2010, 110, 6503. |
[11] | (a) Zhao T.; Xing Z.; Xiu Z.; Li Z.; Yang S.; Zhou W. ACS Appl. Mater. Interfaces 2019, 11, 7104. |
[11] | (b) Ping J.; Wang Y.; Lu Q.; Chen B.; Chen J.; Huang Y.; Ma Q.; Tan C.; Yang J.; Cao X.; Wang Z.; Wu J.; Ying Y.; Zhang H. Adv. Mater. 2016, 28, 7640. |
[11] | (c) Hu Y.; Gao X.; Yu L.; Wang Y.; Ning J.; Xu S.; Lou X. W. Angew. Chem., Int. Ed. 2013, 52, 5636. |
[11] | (d) Liang Y.; Li L.; Cui W. Acta Chim. Sinica 2011, 69, 1313.(in Chinese) |
[11] | (梁英华, 李立业, 崔文权, 化学学报, 2011, 69, 1313.) |
[12] | (a) Dong B.; Cui J.; Gao Y.; Qi Y.; Zhang F.; Li C. Adv. Mater. 2019, 31, 1808. |
[12] | (b) Maeda K.; Teramura K.; Lu D.; Takata T.; Saito N.; Inoue Y.; Domen K. Nature 2006, 440, 295. |
[13] | Wang X.; Maeda K.; Thomas A.; Takanabe K.; Xin G.; Carlsson J. M.; Domen K.; Antonietti M. Nat. Mater. 2009, 8, 76. |
[14] | (a) Ong W. J.; Tan L. L.; Ng Y. H.; Yong S. T.; Chai S. P. Chem. Rev. 2016, 116, 7159. |
[14] | (b) Chu S.; Wang Y.; Guo Y.; Feng J.; Wang C.; Luo W.; Fan X.; Zou Z. ACS Catal. 2013, 3, 912. |
[14] | (c) Cui Y.; Ding Z.; Fu X.; Wang X. Angew. Chem., Int. Ed. 2012, 51, 11814. |
[14] | (d) Sun Z.; Tan Y.; Wan J.; Huang L. Chin. J. Chem. 2021, 39, 2044. |
[15] | (a) Hou Y.; Wen Z.; Cui S.; Guo X.; Chen J. Adv. Mater. 2013, 25, 6291. |
[15] | (b) Hu S.; Jin R.; Lu G.; Liu D.; Gui J. RSC Adv. 2014, 4, 24863. |
[15] | (c) Hu X.; Ji H.; Chang F.; Luo Y. Catal. Today 2014, 224, 34. |
[15] | (d) Jiang D.; Zhu J.; Chen M.; Xie J. J. Colloid Interface Sci. 2014, 417, 115. |
[15] | (e) Jiang F.; Yan T.; Chen H.; Sun A.; Xu C.; Wang X. Appl. Surf. Sci. 2014, 295, 164. |
[15] | (f) Jin Z.; Murakami N.; Tsubota T.; Ohno T. Appl. Catal. B 2014, 150, 479. |
[16] | (a) Fukasawa Y.; Takanabe K.; Shimojima A.; Antonietti M.; Domen K.; Okubo T. Chem. Asian J. 2011, 6, 103. |
[16] | (b) Gao H.; Yan S.; Wang J.; Zou Z. Dalton Trans. 2014, 43, 8178. |
[16] | (c) Gawande S.; Thakare S. R. ChemCatChem 2012, 4, 1759. |
[16] | (d) Guo Y.; Kong F.; Chu S.; Luo L.; Yang J.; Wang Y.; Zou Z. RSC Adv. 2012, 2, 5585. |
[16] | (e) Han C.; Ge L.; Chen C.; Li Y.; Xiao X.; Zhang Y.; Guo L. Appl. Catal. B 2014, 147, 546. |
[16] | (f) Jiang Y., Ding Z., Gao M.; Chen C.; Ni P.; Zhang C.; Wang B.; Duan G.; Lu Y. Chin. J. Chem. 2021, 39, 3369. |
[17] | Li K.; Sun M.; Zhang W.-D. Carbon 2018, 134, 134. |
[18] | Sun Z.; Jiang Y.; Zeng L.; Huang L. ChemSusChem 2019, 12, 1325. |
[19] | Tian J.; Zhang L.; Fan X.; Zhou Y.; Wang M.; Cheng R.; Li M.; Kan X.; Jin X.; Liu Z.; Gao Y.; Shi J. J. Mater. Chem. A 2016, 4, 13814. |
[20] | Yan S. C.; Li Z. S.; Zou Z. G. Langmuir 2009, 25, 10397. |
[21] | Li K.; Xie X.; Zhang W.-D. Carbon 2016, 110, 356. |
[22] | Wang S.; Yang X.; Hou H.; Ding X.; Li S.; Deng F.; Xiang Y.; Chen H. Catal. Sci. Technol. 2017, 7, 418. |
/
〈 |
|
〉 |