Thin Films and Devices of Evaporable Spin Crossover Complexes
Received date: 2022-05-06
Online published: 2022-07-04
Supported by
National Natural Science Foundation of China(52173183); Natural Science Foundation of Hubei Province(2021CFB598); Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences(2020-13)
Spin states of the spin crossover complexes can be switched reversibly between high spin and low spin under different stimulations such as temperature, pressure, irradiation and magnetic field. Generally, it is also accompanied by the change of color, volume and conductivity, and the thermo-induced magnetic hysteresis. Therefore, they show potential applications in optical/thermal switches, sensors, display, and memory devices. Additionally, high-vacuum evaporation is generally applied to fabricate devices in molecular electronics/spintronics with high-quality and ultra-clean films. However, there are very few evaporable spin crossover complexes which greatly limit their applications. In this paper, we systematically summarize the recent progress of evaporable spin crossover complexes in films and devices. Several reported evaporable spin crossover complexes are discussed, and the effect of the substrate on spin transition has been investigated with different techniques, furthermore, the related conceptual devices are discussed. At the end, the existed difficulties and future trends of spin crossover complexes in device applications are prospected and reviewed to provide useful guidance for the future device developments.
Qi Zhang , Mengyun Jiang , Tianyi Liu , Yixun Zeng , Shengwei Shi . Thin Films and Devices of Evaporable Spin Crossover Complexes[J]. Acta Chimica Sinica, 2022 , 80(9) : 1351 -1363 . DOI: 10.6023/A22050212
[1] | Waldrop M. M. Nature 2016, 530, 144. |
[2] | Lefter C.; Rat S.; Costa J. S.; Manrique-Juárez M. D.; Quintero C. M.; Salmon L.; Séguy I.; Leichle T.; Nicu L.; Demont P.; Rotaru A.; Molnár G.; Bousseksou A. Adv. Mater. 2016, 28, 7508. |
[3] | Bousseksou A.; Molnár G.; Salmon L.; Nicolazzi W. Chem. Soc. Rev. 2011, 40, 3313. |
[4] | Shepherd H. J.; Molnár G.; Nicolazzi W.; Salmon L.; Bousseksou A. Eur. J. Inorg. Chem. 2013, 5-6, 653. |
[5] | Sato O. Nat. Chem. 2016, 8, 644. |
[6] | Quintero C. M.; Félix G.; Suleimanov I.; Costa J. S.; Molnár G.; Salmon L.; Nicolazzi W.; Bousseksou A. Beilstein J. Nanotechnol. 2014, 5, 2230. |
[7] | Wang J. L.; Zhu H. L.; Liu Q.; Duan C. Y.; Liu T. Sci. Sin. Chim. 2017, 47, 724.(in Chinese) |
[7] | (王俊丽, 朱海浪, 刘强, 段春迎, 刘涛, 中国科学: 化学, 2017, 47, 724.) |
[8] | Huang Y. X.; Hu H. J.; Wei R. J.; Ning G. H.; Li D. Cryst. Growth Des. 2021, 21, 4587. |
[9] | Galet A.; Gaspar A. B.; Muñoz M. C.; Bukin G. V.; Levchenko G.; Real J. A. Adv. Mater. 2005, 17, 2949. |
[10] | Bartual-Murgui C.; Akou A.; Thibault C.; Molnár G.; Vieu C.; Salmon L.; Bousseksou A. J. Mater. Chem. C 2015, 3, 1277. |
[11] | Gao D. M.; Liu Y.; Miao B.; Wei C.; Ma J. G.; Cheng P.; Yang G. M. Inorg. Chem. 2018, 57, 12475. |
[12] | Poggini L.; Gonidec M.; González-Estefan J. H.; Pecastaings G.; Gobaut B.; Rosa P. Adv. Electron. Mater. 2018, 4, 1800204. |
[13] | Liu T.; Zheng H.; Kang S.; Shiota Y.; Hayami S.; Mito M.; Sato O.; Yoshizawa K.; Kanegawa S.; Duan C. Nat. Commun. 2013, 4, 2863. |
[14] | Seredyuk M.; Gaspar A. B.; Ksenofontov V.; Reiman S.; Galyametdinov Y.; Haase W.; Rentschler E.; Gütlich P. Chem. Mater. 2006, 18, 2513. |
[15] | Shimatani K.; Tajima H.; Komino T.; Ikeda S.; Matsuda M.; Ando Y.; Akiyama H. A. Chem. Lett. 2005, 34, 948. |
[16] | Matsuda M.; Kiyoshima K.; Uchida R.; Kinoshita N.; Tajima H. Thin Solid Films. 2013, 531, 451. |
[17] | Kahn O.; Martinez C. J. Science 1998, 279, 44. |
[18] | Hao G.; Mosey A.; Jiang X.; Yost A. J.; Sapkota K. R.; Wang G. T.; Zhang X.; Zhang J.; N'Diaye A. T.; Cheng R.; Xu X.; Dowben P. A. Appl. Phys. Lett. 2019, 114, 032901. |
[19] | Wang L. F.; Lv B. H.; Wu F. T.; Huang G. Z.; Ruan Z. Y.; Chen Y. C.; Liu M.; Ni Z. P.; Tong M. L. Sci. China Chem. 2022, 1, 120. |
[20] | Cambi L.; Cagnasso A. Atti Accad. Lincei 1931, 13, 809. |
[21] | Baker W. A.; Bobonic H. M. Inorg. Chem. 1963, 2, 1071. |
[22] | Wang R. G.; Meng Y. S.; Gao F. F.; Gao W. Q.; Liu C. H.; Li A. Y.; Liu T.; Zhu Y. Y. Dalton. Trans. 2021, 50, 3369. |
[23] | Wen W.; Meng Y. S.; Jiao C. Q.; Liu Q.; Zhu H. L.; Li Y. M.; Oshio H.; Liu T. Angew. Chem., Int. Ed. 2020, 59, 16393. |
[24] | Zhao X. H.; Shao D.; Chen J. T.; Gan D. X.; Yang J.; Zhang Y. Z. Sci. China Chem. 2022, 65, 532. |
[25] | Chen L. P.; Yan Z.; Wang Z. Q.; Wang Y. X. J. At. Mol. Phys. 2022, 39, 47. |
[26] | Chen W.; Chen R. F.; Li Y. T.; Yu Z. Z.; Xu N.; Bian B. A.; Li X. A.; Wang L. H. Acta Phys. Sin. 2017, 66, 198503.(in Chinese) |
[26] | (陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉, 物理学报, 2017, 66, 198503.) |
[27] | Liu L. L.; Wang J. Chem. J. Chin. Univ. 2019, 40, 2128.(in Chinese) |
[27] | (刘楠楠, 王建, 高等学校化学学报, 2019, 40, 2128.) |
[28] | Chen S. H.; Shu X. Y.; Zhou J.; Zhou C. H.; Xie Q. D.; Zhao T. Y.; Liu L.; Lin W. N.; Chen J. S. Sci. China Mater. 2021, 64, 2029. |
[29] | Wang S.; Cui L. F.; Li X. A.; Wang L. H.; Huang W. Chin. J. Inorg. Chem. 2013, 29, 1733. |
[30] | Halepoto D. M.; Larkworthy L. F.; Povey D. C.; Ramdas V. Inorg. Chim. Acta 1989, 162, 71. |
[31] | Kröber J.; Codjovi E.; Kahn O.; Grolière F.; Jay C. J. Am. Chem. Soc. 1993, 115, 9810. |
[32] | Kröber J.; Audibre J.; Claude R.; Codjovi E.; Kahn O.; Grolibre F.; Jay C.; Bousseksou A.; Linarbs J.; Varret F.; Gonthier-vassal A. Chem. Mater. 1994, 6, 1404. |
[33] | Alam M. S.; Stocker M.; Gieb K.; Müller P.; Haryono M.; Student K.; Grohmann A. Angew. Chem., Int. Ed. 2010, 49, 1159. |
[34] | Shi S. W.; Schmerber G.; Arabski J.; Beaufrand J.; Kim D. J.; Bowen M.; Kemp N. T.; Viart N.; Rogez G. Appl. Phys. Lett. 2009, 95, 043303. |
[35] | Palamarciuc T.; Oberg J. C.; ElHallak F.; Hirjibehedin C. F.; Serri M.; Heutz S.; Létard J. F.; Rosa P. J. Mater. Chem. 2012, 22, 9690. |
[36] | Naggert H.; Bannwarth A.; Chemnitz S.; Von H. T.; Quandt E.; Tuczek F. Dalton. Trans. 2011, 40, 6364. |
[37] | Davesne V.; Gruber M.; Studniarek M.; Doh W. H.; Zafeiratos S.; Joly L.; Sirotti F.; Silly M. G.; Gaspar A. B.; Real J. A.; Schmerber G.; Bowen M.; Weber W.; Boukari S.; Costa V. D.; Arabski J.; Wulfhekel W.; Beaurepaire E. J. Chem. Phys. 2015, 142, 194702. |
[38] | Jasper-Tönnies. T.; Gruber, M.; Karan, S.; Jacob, H.; Tuczek, F.; Berndt, R. J. Phys. Chem. Lett. 2017, 8, 1569. |
[39] | Jasper-Toennies T.; Gruber M.; Karan S.; Jacob H.; Tuczek F.; Berndt R. Nano Lett. 2017, 17, 6613. |
[40] | Shalabaeva V.; Rat S.; Maria D.; Manrique-Juarez A. C. B. J. Mater. Chem. C 2017, 5, 4419. |
[41] | Rohlf S.; Gruber M.; Flo B. M.; Grunwald J.; Jarausch S.; Diekmann F.; Kalla M.; Jasper-toennies T.; Buchholz A.; Plass W. J. Phys. Chem. Lett. 2018, 9, 1491. |
[42] | Atzori M.; Poggini L.; Squillantini L.; Cortigiani B. J. Mater. Chem. C 2018, 6, 8885. |
[43] | Mahfoud T.; Molnár G.; Cobo S.; Salmon L.; Thibault C.; Vieu C.; Demont P.; Bousseksou A. Appl. Phys. Lett. 2011, 99, 053307. |
[44] | Ossinger S.; Kipgen L.; Naggert H.; Bernien M.; Britton A. J.; Nickel F.; Arruda L. M.; Kumberg I.; Engesser T. A.; Golias E.; Näther C.; Tuczek F.; Kuch W. J. Phys. Condens. Mat. 2020, 32, 114003. |
[45] | Cavallini M. Phys. Chem. Chem. Phys. 2012, 14, 11867. |
[46] | Haraguchi T.; Otsubo K.; Kitagawa H. Eur. J. Inorg. Chem. 2018, 16, 1697. |
[47] | Mallah T.; Cavallini M. Comptes Rendus Chim. 2018, 21, 1270. |
[48] | Kipgen L.; Bernien M.; Tuczek F.; Kuch W. Adv. Mater. 2021, 24, 2008141. |
[49] | Soyer H.; Mingotaud C.; Boillot M.; Delhaes P. Langmuir 1998, 14, 5890. |
[50] | Cobo S.; Molnár G.; Real J. A.; Bousseksou A. Angew. Chem., Int. Ed. 2006, 45, 5786. |
[51] | Molnár G.; Cobo S.; Real J. A.; Carcenac F.; Daran E.; Vieu C.; Bousseksou A. Adv. Mater. 2007, 19, 2163. |
[52] | Matsuda M.; Tajima H. Chem. Lett. 2007, 36, 700. |
[53] | Tanaka D.; Aketa N.; Tanaka H.; Tamaki T.; Inose T.; Akai T.; Toyama H.; Sakata O.; Tajiri H.; Ogawa T. Chem Commun. 2014, 50, 10074. |
[54] | Félix G.; Abdul-Kader K.; Mahfoud T.; Guralskiy I. A.; Nicolazzi W.; Salmon L.; Molnár G.; Bousseksou A. J. Am. Chem. Soc. 2011, 133, 15342. |
[55] | Tanaka D.; Aketa N.; Tanaka H.; Horike S.; Fukumori M.; Tamaki T.; Inose T.; Akai T.; Toyama H.; Sakata O.; Tajiri H.; Ogawa T. Dalton. Trans. 2019, 48, 7074. |
[56] | Cavallini M.; Bergenti I.; Milita S.; Kengne J. C.; Gentili D.; Ruani G.; Salitros I.; Meded V.; Ruben M. Langmuir 2011, 27, 4076. |
[57] | Hayami S.; Gu Z. Z.; Yoshiki H.; Fujishima A.; Sato O. J. Am. Chem. Soc. 2001, 123, 11644. |
[58] | Molnár G.; Cobo S.; Real J. A.; Carcenac F.; Daran E.; Vieu C.; Bousseksou A. Adv. Mater. 2007, 19, 2163. |
[59] | Tangoulis V.; Polyzou C. D.; Gkolfi P.; Lalioti N.; Malina O.; Polaskova M. Dalton. Trans. 2021, 50, 3109. |
[60] | Poggini L.; Milek M.; Londi G.; Naim A.; Poneti G.; Squillantini L.; Magnani A.; Totti F.; Rosa P.; Khusniyarov M. M.; Mannini M. Mater. Horizons. 2018, 5, 506. |
[61] | Kumar K. S.; Ruben M. Angew. Chem., Int. Ed. 2021, 60, 7502. |
[62] | Gruber M.; Miyamachi T.; Davesne V.; Bowen M.; Boukari S.; Wulfhekel W.; Beaurepaire E.; Wulfhekel W.; Alouani M. J. Chem. Phys. 2017, 146, 092312. |
[63] | Miyamachi T.; Gruber M.; Davesne V.; Bowen M.; Boukari S.; Joly L.; Scheurer F.; Rogez G.; Yamada T. K.; Ohresser P.; Beaurepaire E.; Wulfhekel W. Nat. Commun. 2012, 3, 938. |
[64] | Zhang Y. C. Phys. Chem. Chem. Phys. 2021, 23, 23758. |
[65] | Real J. A.; Munoz M. C.; Faus J.; Solans X. Inorg. Chem. 1997, 1669, 3008. |
[66] | Gopakumar T. G.; Matino F.; Naggert H.; Bannwarth A.; Tuczek F.; Berndt R. Angew. Chem., Int. Ed. 2013, 52, 3796. |
[67] | Gopakumar T. G.; Bernien M.; Naggert H.; Matino F.; Hermanns C. F.; Bannwarth A.; Mühlenberend S.; Krüger A.; Krüger D.; Nickel F.; Walter W.; Berndt R.; Kuch W.; Tuczek F. Chem. Eur. J. 2013, 111, 15702. |
[68] | Bernien M.; Naggert H.; Arruda L. M.; Kipgen L.; Nickel F.; Miguel J.; Hermanns C. F.; Kru A.; Kru D.; Tuczek F.; Kuch W. ACS Nano 2015, 9, 8960. |
[69] | Ossinger S.; Naggert H.; Kipgen L.; Jasper-toennies T.; Rai A. J. Phys. Chem. C 2017, 121, 1210. |
[70] | Manrique-Juarez M. D.; Rat S.; Mathieu F.; Saya D.; Séguy I.; Leïchlé T.; Nicu L.; Salmon L.; Molnár G.; Bousseksou A. Appl. Phys. Lett. 2016, 109, 061903. |
[71] | Pronschinske A.; Chen Y.; Lewis F.; Shultz D. A.; Calzolari A.; Nardelli M. B.; Dougherty D. B. Nano Lett. 2013, 13, 1429. |
[72] | Pronschinske A.; Bruce R. C.; Lewis G.; Chen Y.; Calzolari A.; Buongiorno-nardelli D. M.; Shultz D. A. Chem. Commun. 2013, 49, 10446. |
[73] | Zhang X.; Palamarciuc T.; Rosa P.; Doudin B.; Zhang Z. Z.; Wang J.; Dowben P. A. J. Phys. Chem. C 2012, 116, 23291. |
[74] | Jiang X. Y.; Hao G. H.; Wang X.; Mosey A.; Zhang X.; Yu L.; Yost A. J.; DiChiara A. D.; N'Diaye A. T.; Cheng X. M.; Zhang J.; Cheng R. H.; Xu X. S.; Dowben P. A. J. Phys. Condens. Mat. 2019, 31, 315401. |
[75] | Iasco O.; Boillot M. L.; Bellec A.; Guillot R. J. Mater. Chem. C 2017, 5, 11067. |
[76] | Bairagi K.; Iasco O.; Bellec A.; Kartsev A.; Li D.; Girard Y.; Rousset S. Nat. Commun. 2016, 7, 12212. |
[77] | Kaushik B.; Bellec A.; Fourmental C.; Iasco O.; Lagoute J.; Chacon C.; Girard Y.; Rousset S.; Choueikani F.; Otero E.; Ohresser P.; Sainctavit P.; Boillot M.; Mallah T.; Repain V. J. Phys. Chem. 2018, 122, 727. |
[78] | Shalabaeva V.; Mikolasek M.; Manrique-juarez M. D.; Bas A.; Rat S.; Salmon L.; Nicolazzi W.; Bousseksou A. J. Phys. Chem. C 2017, 121, 25617. |
[79] | Shalabaeva V.; Ridier K.; Rat S.; Manrique-Juarez M. D.; Salmon L.; Séguy I.; Rotaru A.; Molnár G.; Bousseksou A. Appl. Phys. Lett. 2018, 112, 013301. |
[80] | Zhang Y. T.; Séguy I.; Ridier K.; Shalabaeva V.; Piedrahita-Bello M.; Rotaru A.; Salmon L.; Molnár G.; Bousseksou A. J. Phys. Condens. Mat. 2020, 32, 214010. |
[81] | Manrique-Juarez M. D.;, Mathieu F.; Shalabaeva V.; Cacheux J.; Rat S.; Nicu L.; Leïchlé T.; Salmon L.; Molnár G.; Bousseksou A. Angew. Chem., Int. Ed. 2017, 56, 8074. |
[82] | Bas A. C.; Thompson X.; Salmon L.; Thibault C.; Molnár G.; Palamarciuc O.; Routaboul L.; Bousseksou A. Magnetochemistry 2019, 5, 5020028. |
[83] | Bernien M.; Wiedemann D.; Hermanns C. F.; Kru A.; Rolf D.; Kroener W.; Mu P.; Grohmann A.; Kuch W. J. Phys. Chem. Lett. 2012, 3, 3431. |
[84] | Kumar K. S.; Studniarek M.; Heinrich B.; Arabski J.; Schmerber G.; Bowen M.; Boukari S.; Beaurepaire E.; Dreiser J.; Ruben M. Adv. Mater. 2018, 11, 1705416. |
[85] | Qiu Y. R.; Ge J. Y.; Li J. Q.; Su J.; Zuo J. L. Sci. Sin. Chim. 2020, 50, 1737.(in Chinese) |
[85] | (仇亚茹, 葛景园, 李佳茜, 苏剑, 左景林, 中国科学: 化学, 2020, 50, 1737.) |
[86] | Ge J. Y.; Chen Z. Y.; Zhang L.; Liang X.; Su J.; Kurmoo M.; Zuo J. L. Angew. Chem., Int. Ed. 2019, 58, 8789. |
[87] | Gakiya-Teruya M.; Jiang X. Y.; Le D.; U?ngör, O?.; Durrani, A.; Koptur-Palenchar, J.; Jiang, J.; Jiang, T.; Meisel, M.; Cheng, H. P.; Zhang, X. G.; Zhang, X. X.; Rahman, T. S.; Hebard, A.; Shatruk, M. J. Am. Chem. Soc. 2021, 143, 14563. |
[88] | Le D.; Jiang T.; Gakiya-Teruya M.; Shatruk M.; Rahman T. S. J. Phys. Condes. Mat. 2021, 33, 385201. |
[89] | Zhang X.; Costa P. S.; Hooper J.; Miller D. P.; N'Diaye A. T.; Beniwal S.; Jiang X.; Yin Y.; Rosa P.; Routaboul L.; Gonidec M.; Poggini L.; Braustein P.; Doudin B.; Xu X.; Enders A.; Zurek E.; Dowben P. A. Adv. Mater. 2017, 29, 1702257. |
[90] | Shi S. W.; Sun Z. Y.; Liu X. J.; Bedoya-Pinto A.; Graziosi P.; Yu H. Z.; Li W. T.; Liu G.; Hueso L.; Dediu V. A.; Fahlman M. Adv. Electron. Mater. 2018, 4, 1800077. |
[91] | Shi S. W.; Sun Z. Y.; Bedoya-Pinto A.; Graziosi P.; Li X. T.; Liu X. J.; Hueso L.; Dediu V. A.; Luo Y.; Fahlman M. Adv. Funct. Mater. 2014, 24, 4812. |
[92] | Lach S.; Altenhof A.; Shi S. W.; Fahlman M.; Ziegler C. Phys. Chem. Chem. Phys. 2019, 21, 15833. |
[93] | Barraud C.; Bouzehouane K.; Deranlot C.; Kim D. J.; Rakshit R.; Shi S. W.; Arabski J.; Bowen M.; Beaurepaire E.; Boukari S.; Petroff F.; Seneor P.; Mattana R. Dalton. Trans. 2016, 45, 16694. |
[94] | Torres-Cavanillas R.; Morant-Giner M.; Escorcia-Ariza G.; Dugay, J.; Canet-Ferrer, J.; Tatay, S.; Cardona-Serra, S.; Giménez-Marqués, M.; Galbiati, M.; Forment-Aliaga, A.; Coronado, E. Nat. Mater. 2021, 13, 1101. |
/
〈 |
|
〉 |