Review

Structural Solution of Porous Materials on the Mesostructural Scale by Electron Microscopy

  • Quanzheng Deng ,
  • Wenting Mao ,
  • Lu Han
Expand
  • a School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
    b School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
* E-mail: ; Tel.: 021-55234224

Received date: 2022-03-29

  Online published: 2022-07-07

Supported by

National Natural Science Foundation of China(21922304); National Natural Science Foundation of China(21873072); Natural Science Foundation of Shanghai(18ZR1442400)

Abstract

Ordered porous materials on the meso-structural scale have attracted great attention due to their ordered porous structure, large surface area and unique spatial confinement effect, which may find widespread applications in adsorption, separation, catalysis, sensing, drug delivery, energy storage, etc. The in-depth analysis of the structural characteristics of these porous materials is not only essential for understanding their properties and performances, but also the key for the future materials synthesis and their formation mechanism. The structural solution of porous materials on the meso-structural scale by using electron microscopy for last decades was outlined, which shows great advantages in the structural solution of the porous solids through diffractometry and imaging. Several representative examples including ordered mesoporous materials and macro-porous scaffolds, have been solved by appropriate methods. Then, the electron microscopy methods applicable to different types of porous materials were summarized. Finally, the advantages, limitations and future development of electron microscopy towards new porous materials, as well as the feasibility of using this technique for other materials were concluded.

Cite this article

Quanzheng Deng , Wenting Mao , Lu Han . Structural Solution of Porous Materials on the Mesostructural Scale by Electron Microscopy[J]. Acta Chimica Sinica, 2022 , 80(8) : 1203 -1216 . DOI: 10.6023/A22030136

References

[1]
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 59, 710.
[2]
Huo, Q.; Margolese, D. I.; Ciesia, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Firouzi, A. Chem. Mater. 1994, 6, 1176.
[3]
Wan, Y.; Zhao, D. Chem. Rev. 2007, 107, 2821.
[4]
Terasaki, O.; Liu, Z.; Ohsuna, T.; Shin, H. J.; Ryoo, R. Microsc. Microanal. 2002, 8, 35.
[5]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; G. Fredrickson, H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[6]
Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304.
[7]
Che, S.; Liu, Z.; Ohsuna, T. Nature 2004, 429, 281.
[8]
Qiu, H.; Che, S. J. Phys. Chem. B 2008, 112, 10466.
[9]
Qiu, H.; Wang, S.; Zhang, W.; Sakamoto, K.; Terasaki, O.; Inoue, Y.; Che, S. J. Phys. Chem. C 2008, 112, 1871.
[10]
Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
[11]
Garcia-Bennett, A. E.; Che, S.; Tatsumi, T.; Terasaki, O. Chem. Mater. 2004, 16, 813.
[12]
Garcia-Bennett, A. E.; Kupferschmidt, N.; Sakamoto, Y.; Che, S.; Terasaki, O. Angew. Chem. Int. Ed. 2005, 44, 5317.
[13]
Xiao, C.; Fujita, N.; Miyasaka, K.; Sakamoto, Y.; Terasaki, O. Nature 2012, 487, 349.
[14]
Carlsson, A.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Joo, S. H. J. Electron. Microsc. 1999, 48, 795.
[15]
Gao, C.; Sakamoto, Y.; Sakamoto, K.; Terasaki, O.; Che, S. Angew. Chem. Int. Ed. 2006, 45, 4295.
[16]
Han, Y.; Zhang, D.; Chng, L.; Sun, J.; Zhao, L.; Zou, X. Nature Chem. 2009, 1, 123.
[17]
Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
[18]
Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F. J. Am. Chem. Soc. 2008, 130, 11510.
[19]
Kielman, T.; Asahina, S.; Schmitt, J.; Impéror-Clerc, M.; Terasaki, O.; Alfreason, V. Chem. Mater. 2013, 25, 4105.
[20]
Qiu, H.; Sakamoto, Y.; Terasaki, O.; Che, S. A. Adv. Mater. 2008, 20, 425.
[21]
Jin, C.; Han, L.; Che, S. Angew. Chem. Int. Ed. 2009, 48, 9268.
[22]
Aubert, T.; Ma, K.; Tan, K.; Winsner, U. Adv. Mater. 2020, 32, 1908362.
[23]
Xi, X.; Wu, D.; Han, L.; Yu, Y.; Su, Y.; Tang, W.; Liu, R. ACS Nano 2018, 12, 5436.
[24]
Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449.
[25]
Huo, Q.; Margolese, D.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317.
[26]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[27]
Sakamoto, Y.; Díaz, I.; Terasaki, O.; Zhao, D. Y.; PérezPariente, J.; Kim, J.; Galen, D.; Stucky, G. D. J. Phys. Chem. B 2002, 106, 3118.
[28]
Miyasaka, K.; Han, L.; Che, S.; Terasaki, O.; Angew. Chem. Int. Ed. 2006, 45, 6516.
[29]
Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S. J. Mater. Chem. 2007, 17, 1216.
[30]
Ma, Y.; Han, L.; Miyasaka, K.; Oleynikov, P.; Che, S.; Terasaki, O. Chem. Mater. 2013, 25, 2184.
[31]
Alfonso, E.; Garcia-Bennett, A. E.; Miyasaka, K.; Terasaki, O.; Che, S. Chem. Mater. 2004, 16, 3597.
[32]
Han, L.; Sakamoto, Y.; Che, S.; Terasaki, O. Chem.- Eur. J. 2009, 15, 2818.
[33]
Sakamoto, Y.; Terasaki, O. Solid State Sciences 2011, 13, 762.
[34]
Ohsuna, T.; Sakamoto, Y.; Terasaki, O.; Kuroda, K. Solid State Sci. 2011, 13, 736.
[35]
Sakamoto, Y.; Han, L.; Che, S.; Terasaki, O. Chem. Mater. 2009, 21, 223.
[36]
Che, S.; Lim, S.; Kaneda, M.; Yoshitake, H.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2002, 124, 13962.
[37]
Che, S.; Kamiya, S.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2001, 123, 12089.
[38]
Han, L.; Xiong, P.; Bai, J.; Che, S. J. Am. Chem. Soc. 2011, 133, 6106.
[39]
Sun, Y.; Ma, K.; Kao, T.; Spoth, K. A.; Sai, H.; Zhang, D.; Kourkoutis, L. F.; Elser, V.; Wiesner, U. Nat. Commun. 2017, 8, 252.
[40]
Wang, Y.; Deng, Q. Z.; Fujita, N.; Han, L. Chem. Mater. 2020, 32, 5236.
[41]
Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256.
[42]
Miyasaka, K.; Terasaki, O. Angew. Chem. Int. Ed. 2010, 49, 8867.
[43]
Han, L.; Miyasaka, K.; Terasaki, O.; Che, S.; J. Am. Chem. Soc. 2011, 133, 11542.
[44]
Harold, M. P. MRS Bull. 1994, 19, 34.
[45]
Wu, M. X.; Fujiu, T.; Messing, G. L. Solids 1990, 121, 407.
[46]
Litovsky, E.; Shapiro, M.; Shavit, A. J. Am. Ceram. Soc. 1996, 79, 1366.
[47]
Zhang, Y.; Yu, S.; Lou, G. B.; Shen, Y. L.; Chen, H.; Shen, Z. H.; Zhao, S. Y.; Zhang, J. Z.; Chai, S. G.; Zou, Q. C. J. Mater. Sci. 2017, 52, 11201.
[48]
Wilts, B.; Zubiri, B.; Klatt, M.; Butz, B.; Fischer, M.; Kelly, S.; Spiecher, E.; Striner, U.; Schröder-turk, A. Sci. Adv. 2017, 3, e1603119.
[49]
Kobayashi, Y.; Yoshioka, S. J. R. Soc. Interface 2021, 18, 20210505.
[50]
Velev, O. D.; Jede, T. A.; Lobo, R. F. Nature 1997, 389, 447.
[51]
Judith, E. G. J.; Wijnhoven; Willem, L. V. Science 1998, 281, 802.
[52]
Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z. Science 1998, 282, 897.
[53]
Han, L.; Xu, D. P.; Liu, Y.; Ohsuna, T.; Yao, Y.; Jiang, C.; Mai, Y. Y.; Cao, Y. Y.; Duan, Y. Y.; Che, S. Chem. Mater. 2014, 26, 7020.
[54]
Mao, W. T.; Cao, X.; Sheng, Q. Q.; Han, L.; Che, S. Angew. Chem., Int. Ed. 2017, 56, 10670.
[55]
Cao, X.; Xu, D.; Yao, Y.; Han, L.; Terasaki, O.; Che, S. Chem. Mater. 2016, 28, 3691.
[56]
Sheng, Q.; Chen, H.; Mao, W. T.; Cui, C. C.; Che, S.; Han, L. Angew. Chem. Int. Ed. 2021, 60, 15236.
[57]
Mao, W.; Bao, C.; Han, L. Microsc. Microanal. 2021, 27, 996.
[58]
Yu, Y.; Liu, S.; Li, J.; Chen, Q. Y. Acta Phys.-Chim. Sin. 2009, 25, 1890. (in Chinese)
[58]
(于勇, 刘世军, 李杰, 陈启元, 物理化学学报, 2009, 25, 1890.)
[59]
Wei, F.; Zhang, Q.; Wu, H.; Cao, C.; Song, W. Science China Chemistry 2017, 60, 1588.
[60]
Huang, M.; Yue, K.; Wang, J.; Hsu, C.; Wang, L.; Cheng, Z. Science China Chemistry 2018, 61, 33.
[61]
Su, Z.; Chen, Q.; Li, J.; Liu, S. Acta Phys.-Chim. Sinica 2007, 23, 1760. (in Chinese)
[61]
(苏兆辉, 陈启元, 李杰, 刘世军, 物理化学学报, 2007, 23, 1760.)
[62]
Sun, B.; Guo, Y.; Xu, L.; Huang, Z.; Wu, P.; Che, S. Acta Chim. Sinica 2012, 70, 2419.
[63]
Li, M.; Yu, J. Acta Chim. Sinica 2011, 69, 226. (in Chinese)
[63]
(李猛, 俞建长, 化学学报, 2011, 69, 226.)
[64]
Zhang, R.; Yang, C. Acta Chim. Sinica 2006, 64, 2165. (in Chinese)
[64]
(张蓉芳, 杨春, 化学学报, 2006, 64, 2165.)
[65]
Guo, B.; Wu, H.; Chen, J.; Wang, J.; Wei, H.; Mai, Y. CCS Chem. 2020, 2, 1410.
[66]
Xu, Z.; Li, L.; Chen, X.; Fang, C.; Xiao, G. CCS Chem. 2021, 3, 3514.
[67]
Sun, T.; Lei, W.; Ma, Y. H.; Zhang, Y. B. Chin. J. Chem. 2020, 38, 1153.
[68]
Jinschek, J. R.; Helveg, S. Micron 2012, 43, 1156.
[69]
Möebus, G.; Doole, R. C.; Inkson, B. J. Ultramicroscopy 2003, 96, 433.
[70]
Zewail, A. H. Science 2010, 328, 187.
[71]
Pennycook, S.; Boatner, L. Nature 1988, 336, 567.
[72]
Stefan, W. Science 2007, 316, 1153.
[73]
Cullis, A.; Canham, L. Nature 1991, 353, 335.
[74]
Midgley, P. A.; Weyland, M. Ultramicroscopy 2003, 96, 413.
[75]
Peter, B.; Yang, D. S.; Zewail, A. H. Science 2007, 318, 788.
Outlines

/