Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation
Received date: 2022-04-24
Online published: 2022-07-15
Supported by
Young Scientists Fund of the National Natural Science Foundation of China(22108178)
Compared to the traditional heat-driven cryogenic distillation process, the membrane separation based on metal- organic frameworks (MOFs) is a technically and economically viable alternative for ethane/ethylene (C2H6/C2H4) separation. To accelerate the application of MOF membranes in this gas separation field, this study performed a large-scale computational screening of 12,020 real MOFs for the identification of optimal C2H6-selective MOF membrane materials. According to geometric and chemical analyses, 2,192 MOFs without open metal sites and having pore limiting diameter no less than 0.38 nm were first screened out. Grand canonical Monte Carlo and molecular dynamics simulations were subsequently carried out to mimic the adsorption and diffusion behaviors of ethane and ethylene in these MOFs respectively, based on which their C2H6/C2H4 membrane selectivities and C2H6 permeabilities were estimated. The results showed that MISQIQ04 exhibited the highest C2H6/C2H4 membrane selectivity (4.16) and moderate C2H6 permeability (4.35×105 Barrer). Additionally, structure- performance relationships between the C2H6/C2H4 membrane selectivity and structural properties of MOFs were investigated, covering the largest cavity diameter (LCD), pore limiting diameter (PLD), density (ρ), gravimetric surface area (GSA), void fraction (VF), and pore volume (PV). The results indicated that MOFs with the structural characteristics of 0.4 nm≤LCD≤1 nm, 0.38 nm≤PLD≤0.75 nm, 0.8 g/cm3≤ρ≤2.5 g/cm3, GSA≤1,700 m2/g, 0.3≤VF≤0.73, and PV≤0.85 cm3/g are optimal membrane materials for C2H6/C2H4 separation. Finally, a machine learning (ML) classifier was developed to achieve rapid prescreening of high-performing MOF membranes from a large MOF database, whose transferability was discussed on a hypothetical MOF database. Further t-Distributed Stochastic Neighbor Embedding analysis revealed that the ML model developed merely relying on a single MOF dataset generally exhibited poor transferability. Selecting the most representative and diverse MOFs from the entire MOF space for model development can help to improve the transferability and generalization ability of the developed model.
Min Cheng , Shihui Wang , Lei Luo , Li Zhou , Kexin Bi , Yiyang Dai , Xu Ji . Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation[J]. Acta Chimica Sinica, 2022 , 80(9) : 1277 -1288 . DOI: 10.6023/A22040186
[1] | Kang M.; Yoon S.; Ga S.; Kang D. W.; Han S.; Choe J. H.; Kim H.; Kim D. W.; Chung Y.; Hong C. S. Adv. Sci. 2021, 8, 2004940. |
[2] | Li J. R.; Kuppler R. J.; Zhou H. C. Chem. Soc. Rev. 2009, 38, 1477. |
[3] | Sholl D. S.; Lively R. P. Nature 2016, 532, 435. |
[4] | Wang Y. X.; Peh S. B.; Zhao D. Small 2019, 15, 1900058. |
[5] | Lv D. F.; Zhou P. J.; Xu J. H.; Tu S.; Xu F.; Yan J.; Xi H. X.; Yuan W. B.; Fu Q.; Chen X.; Xia Q. B. Chem. Eng. J. 2022, 431, 133208. |
[6] | Eldridge R. B. Ind. Eng. Chem. Res. 1993, 32, 2208. |
[7] | Ren Y. X.; Liang X.; Dou H. Z.; Ye C. M.; Guo Z. Y.; Wang J. Y.; Pan Y. C.; Wu H.; Guiver M. D.; Jiang Z. Y. Adv. Sci. 2020, 7, 2001398. |
[8] | Rungta M.; Zhang C.; Koros W. J.; Xu L. R. AIChE J. 2013, 59, 3475. |
[9] | Daglar H.; Erucar I.; Keskin S. Mater. Adv. 2021, 2, 5300. |
[10] | Liu Z. L.; Li W.; Liu H.; Zhuang X. D.; Li S. Acta Chim. Sinica 2019, 77, 323.(in Chinese) |
[10] | (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.) |
[11] | Wu X. J.; Zhao P.; Fang J. M.; Wang J.; Liu B. S.; Cai W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.(in Chinese) |
[11] | (吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权, 物理化学学报, 2014, 30, 2043.) |
[12] | Bian L.; Li W.; Wei Z. Z.; Liu X. W.; Li S. Acta Chim. Sinica 2018, 76, 303.(in Chinese) |
[12] | (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.) |
[13] | Yang L.; Wu Y. J.; Wu X. J.; Cai W. Q. Acta Chim. Sinica 2021, 79, 520.(in Chinese) |
[13] | (杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报, 2021, 79, 520.) |
[14] | Zhou J. H.; Zhao H. L.; Hu J.; Liu H. L.; Hu Y. CIESC J. 2014, 65, 1680.(in Chinese) |
[14] | (周建海, 赵会玲, 胡军, 刘洪来, 胡英, 化工学报, 2014, 65, 1680.) |
[15] | Zhu G. F.; Chen L. T.; Cheng G. H.; Zhao J.; Yang C.; Zhang Y. Z.; Wang X.; Fan J. Acta Chim. Sinica 2019, 77, 434.(in Chinese) |
[15] | (朱桂芬, 陈乐田, 程国浩, 赵娟, 杨灿, 张耀宗, 王醒, 樊静, 化学学报, 2019, 77, 434.) |
[16] | Liu M. L.; Wu Q.; Shi H. F.; An Z. F.; Huang W. Acta Chim. Sinica 2018, 76, 246.(in Chinese) |
[16] | (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
[17] | Meng S. Y.; Wang M. M.; Lu B. L.; Xue Q. J.; Yang Z. W. Acta Chim. Sinica 2019, 77, 1184.(in Chinese) |
[17] | (孟双艳, 王明明, 吕柏霖, 薛群基, 杨志旺, 化学学报, 2019, 77, 1184.) |
[18] | Wu Z. M.; Shi Y.; Li C. Y.; Niu D. Y.; Chu Q.; Xiong W.; Li X. Y. Acta Chim. Sinica 2019, 77, 758.(in Chinese) |
[18] | (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.) |
[19] | Liu R. X.; He X. Y.; Niu L. T.; Lv B. L.; Yu F.; Zhang Z.; Yang Z. W. Acta Chim. Sinica 2019, 77, 653.(in Chinese) |
[19] | (刘茹雪, 何小燕, 牛力同, 吕柏霖, 余菲, 张哲, 杨志旺, 化学学报, 2019, 77, 653.) |
[20] | Lv L. X.; Zhao Y. L.; Wei Y. Y.; Wang H. H. Acta Chim. Sinica 2021, 79, 869.(in Chinese) |
[20] | (吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.) |
[21] | Huang A. S.; Wang N. Y.; Kong C. L.; Caro J. Angew. Chem. Int. Ed. 2012, 51, 10551. |
[22] | Pan Y.; Lai Z. Chem. Commun. 2011, 47, 10275. |
[23] | Bux H.; Chmelik C.; Krishna R.; Caro J. J. Membr. Sci. 2011, 369, 284. |
[24] | James J. B.; Wang J.; Meng L.; Lin Y. S. Ind. Eng. Chem. Res. 2017, 56, 7567. |
[25] | Chmelik C.; Freude D.; Bux H.; Haase J. Microporous Mesoporous Mater. 2012, 147, 135. |
[26] | Berens S.; Hillman F.; Jeong H. K.; Vasenkov S. Microporous Mesoporous Mater. 2019, 288, 109603. |
[27] | Berens S.; Chmelik C.; Hillman F.; Kärger J.; Jeong H. K.; Vasenkov S. Phys. Chem. Chem. Phys. 2018, 20, 23967. |
[28] | Borah B.; Zhang H.; Snurr R. Q. Chem. Eng. Sci. 2015, 124, 135. |
[29] | Ford D. C.; Dubbeldam D.; Snurr R. Q.; Ku?nzel V.; Wehring M.; Stallmach F.; Kärger J.; Mu?ller U. J. Phys. Chem. Lett. 2012, 3, 930. |
[30] | Krokidas P.; Castier M.; Moncho S.; Brothers E.; Economou I. G. J. Phys. Chem. C 2015, 119, 27028. |
[31] | Chokbunpiam T.; Chanajaree R.; Saengsawang O.; Reimann S.; Chmelik C.; Fritzsche S.; Hannongbua S. Microporous Mesoporous Mater. 2013, 174, 126. |
[32] | Verploegh R. J.; Nair S.; Sholl D. S. J. Am. Chem. Soc. 2015, 137, 15760. |
[33] | Altintas C.; Keskin S. Chem. Eng. Sci. 2016, 139, 49. |
[34] | Altintas C.; Keskin S. RSC Adv. 2017, 7, 52283. |
[35] | Moghadam P. Z.; Li A.; Wiggin S. B.; Tao A.; Fairen-Jimenez D. Chem. Mater. 2017, 29, 2618. |
[36] | Chong S.; Lee S.; Kim B.; Kim J. Coord. Chem. Rev. 2020, 423, 213487. |
[37] | Tang H. J.; Jiang J. W. AIChE J. 2021, 67, e17025. |
[38] | Solanki V. A.; Borah B. J. Mol. Model. 2020, 26, 1. |
[39] | Qiao Z. W.; Peng C. W.; Zhou J.; Jiang J. W. J. Mater. Chem. A 2016, 4, 15904. |
[40] | Qiao Z. W.; Xu Q. S.; Jiang J. W. J. Membr. Sci. 2018, 551, 47. |
[41] | Altintas C.; Avci G.; Daglar H.; Gulcay E.; Erucar I.; Keskin S. J. Mater. Chem. A 2018, 6, 5836. |
[42] | Avci G.; Erucar I.; Keskin S. ACS Appl. Mater. Interfaces 2020, 12, 41567. |
[43] | Wilmer C. E.; Leaf M.; Lee C. Y.; Farha O. K.; Hauser B. G.; Hupp J. T.; Snurr R. Q. Nat. Chem. 2012, 4, 83. |
[44] | Gómez-Gualdrón D. A.; Colón Y. J.; Zhang X.; Wang T. C.; Chen Y. S.; Hupp J. T.; Yildirim T.; Farha O. K.; Zhang J.; Snurr R. Q. Energy Environ. Sci. 2016, 9, 3279. |
[45] | Boyd P. G.; Chidambaram A.; García-Díez E.; Ireland C. P.; Daff T. D.; Bounds R.; Gładysiak A.; Schouwink P.; Moosavi S. M.; Maroto-Valer M. M.; Reimer J. A.; Navarro J. A. R.; Woo T. K.; Garcia S.; Stylianou K. C.; Smit B. Nature 2019, 576, 253. |
[46] | Yang W. Y.; Liang H.; Peng F.; Liu Z. L.; Liu J.; Qiao Z. W. Nanomaterials 2019, 9, 467. |
[47] | Cai C. Z.; Li L. F.; Deng X. M.; Li S. H.; Liang H.; Qiao Z. W. Acta Chim. Sinica 2020, 78, 427.(in Chinese) |
[47] | (蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.) |
[48] | Wang S. H.; Xue X. Y.; Cheng M.; Chen S. C.; Liu C.; Zhou L.; Bi K. X.; Ji X. Acta Chim. Sinica 2022, 80, 614.(in Chinese) |
[48] | (王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭, 化学学报, 2022, 80, 614.) |
[49] | Yang W. Y.; Liang H.; Qiao Z. W. Acta Chim. Sinica 2018, 76, 785.(in Chinese) |
[49] | (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.) |
[50] | Halder P.; Singh J. K. Energy Fuels 2020, 34, 14591. |
[51] | Chung Y. G.; Haldoupis E.; Bucior B. J.; Haranczyk M.; Lee S.; Zhang H. D.; Vogiatzis K. D.; Milisavljevic M.; Ling S. L.; Camp J. S.; Slater B.; Ilja Siepmann J.; Sholl D. S.; Snurr R. Q. J. Chem. Eng. Data 2019, 64, 5985. |
[52] | Dubbeldam D.; Calero S.; Ellis D. E.; Snurr R. Q. Mol. Simul. 2016, 42, 81. |
[53] | Ongari D.; Boyd P. G.; Barthel S.; Witman M.; Haranczyk M.; Smit B. Langmuir 2017, 33, 14529. |
[54] | Willems T. F.; Rycroft C. H.; Kazi M.; Meza J. C.; Haranczyk M. Microporous Mesoporous Mater. 2012, 149, 134. |
[55] | Daglar H.; Erucar I.; Keskin S. J. Membr. Sci. 2021, 618, 118555. |
[56] | Mayo S. L.; Olafson B. D.; Goddard W. A. J. Phys. Chem. 1990, 94, 8897. |
[57] | Rappé A. K.; Casewit C. J.; Colwell K. S.; Goddard III W. A.; Skiff W. M. J. Am. Chem. Soc. 1992, 114, 10024. |
[58] | Ban S.; Van Laak A.; De Jongh P. E.; Van der Eerden J. P.; Vlugt T. J. J. Phys. Chem. C 2007, 111, 17241. |
[59] | Widom B. J. Chem. Phys. 1963, 39, 2808. |
[60] | Evans D. J.; Holian B. L. J. Chem. Phys. 1985, 83, 4069. |
[61] | Altintas C.; Keskin S. ACS Sustainable Chem. Eng. 2018, 7, 2739. |
[62] | Accelrys Incorporation, Materials Studio, Version 19.1, Accelrys Inc., San Diego, 2009. |
[63] | Rappe A. K.; Goddard W. A. J. Chem. Phys. 1991, 95, 3358. |
[64] | Martin M. G.; Ilja Siepmann J. J. Phys. Chem. B 1998, 102, 2569. |
[65] | Ertl P.; Schuffenhauer A. J. Cheminf. 2009, 1, 8. |
[66] | Alibaba.com, Available online: https://www.alibaba.com, Accessed on 16 June 2022. |
[67] | Ozturk T. N.; Keskin S. J. Phys. Chem. C 2014, 118, 13988. |
[68] | Lundberg S.; Lee S. I. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17),Ed.: Hook, R., Curran Associates Inc., New York, 2017, p. 4768. |
[69] | Wang R. H.; Zhong Y. H.; Bi L. M.; Yang M. L.; Xu D. G. ACS Appl. Mater. Interfaces 2020, 12, 52797. |
[70] | Van der Maaten L.; Hinton G. J. Mach. Learn. Res. 2008, 9, 2579. |
/
〈 |
|
〉 |