Recent Advances in Monomer Design for Recyclable Polymers
Received date: 2022-05-23
Online published: 2022-07-15
Supported by
National Key Research and Development Program of China(2021YFA1501700); National Natural Science Foundation of China(51903177); National Natural Science Foundation of China(21871036); National Natural Science Foundation of China(52073274)
The development of modern society highly depends on polymer materials. However, progressive usage and accumulation of polymer products caused the waste of resources and severe environmental issues. To address the abovementioned problem, the development of chemical recycling polymers that could transform the polymers back to monomers and repolymerize to produce polymer materials without value loss is an attractive and important strategy. In recent years, significant advances in the design of “ideal monomers” have enabled the regulation of “polymerization-depolymerization” equilibrium and achieved the closed-loop recycling under mild conditions. This review will focus on the closed-loop recycling of polyesters, polycarbonates, sulfur-containing polymers, and poly(cyclic olefin)s, illustrate the challenges of this field, and provide a perspective on the future development direction.
Zhongzheng Cai , Ye Liu , Youhua Tao , Jian-Bo Zhu . Recent Advances in Monomer Design for Recyclable Polymers[J]. Acta Chimica Sinica, 2022 , 80(8) : 1165 -1182 . DOI: 10.6023/A22050235
[1] | Singh Jadaun, J.; Bansal, S.; Sonthalia, A.; Rai, A. K.; Singh, S. P. Bioresour. Technol. 2022, 347, 126697. |
[2] | PlasticsEurope,Plastics - the Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data, PlasticsEurope, 2019. |
[3] | Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Science 2015, 347, 768. |
[4] | Stubbins, A.; Law, K. L.; Munoz, S. E.; Bianchi, T. S.; Zhu, L. Science 2021, 373, 51. |
[5] | Santos, R. G.; Machovsky-Capuska, G. E.; Andrades, R. Science 2021, 373, 56. |
[6] | MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. Science 2021, 373, 61. |
[7] | Geyer, R.; Jambeck, J. R.; Law, K. L. Sci. Adv. 2017, 3, 25. |
[8] | Zheng, J.; Suh, S. Nat. Clim. Chang. 2019, 9, 374. |
[9] | World Economic Forum. The New Plastics Economy: Rethinking the Future of Plastics & Catalysing Action, Ellen MacArthur Foundation and McKinsey & Company. https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action. |
[10] | Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y.-X.; Leibfarth, F. A.; Sardon, H. Nature 2022, 603, 803. |
[11] | Zhang, F.; Wang, F.; Wei, X.; Yang, Y.; Xu, S.; Deng, D.; Wang, Y.-Z. J. Energy Chem. 2022, 69, 369. |
[12] | Hong, M.; Chen, E. Y. X. Green Chem. 2017, 19, 3692. |
[13] | Lu, X. B.; Liu, Y.; Zhou, H. Chem. Eur. J. 2018, 24, 11255. |
[14] | Tang, X.; Chen, E. Y.-X. Chem 2019, 5, 284. |
[15] | Coates, G. W.; Getzler, Y. D. Y. L. Nat. Rev. Mater. 2020, 5, 501. |
[16] | Xu, G.; Wang, Q. Green Chem. 2022, 24, 2321. |
[17] | Olsén, P.; Odelius, K.; Albertsson, A.-C. Biomacromolecules 2016, 17, 699. |
[18] | Diesendruck, C. E.; Peterson, G. I.; Kulik, H. J.; Kaitz, J. A.; Mar, B. D.; May, P. A.; White, S. R.; Martínez, T. J.; Boydston, A. J.; Moore, J. S. Nat. Chem. 2014, 6, 623. |
[19] | Lutz, J. P.; Davydovich, O.; Hannigan, M. D.; Moore, J. S.; Zimmerman, P. M.; McNeil, A. J. J. Am. Chem. Soc. 2019, 141, 14544. |
[20] | Shi, C.; Reilly, L. T.; Phani Kumar, V. S.; Coile, M. W.; Nicholson, S. R.; Broadbelt, L. J.; Beckham, G. T.; Chen, E. Y. X. Chem 2021, 7, 2896. |
[21] | PET Polymer: Chemical Economics Handbook,IHS Markit, 2018. https://ihsmarkit.com/products/pet-polymer-chemicaleconomics-handbook.html (accessed May 14, 2022) |
[22] | Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539. |
[23] | Moore, T.; Adhikari, R.; Gunatillake, P. Biomaterials 2005, 26, 3771. |
[24] | Duda, A.; Kowalski, A. Handbook of Ring‐Opening Polymerization, Wiley online, 2009, pp. 1-51. |
[25] | Houk, K. N.; Jabbari, A.; Hall, H. K.; Alemán, C. J. Org. Chem. 2008, 73, 2674. |
[26] | Yamashita, K.; Yamamoto, K.; Kadokawa, J. I. Chem. Lett. 2014, 43, 213. |
[27] | Hong, M.; Chen, E. Y.-X. Nat. Chem. 2016, 8, 42. |
[28] | Liu, Y.; Wu, J.; Hu, X.; Zhu, N.; Guo, K. ACS Macro Lett. 2021, 10, 284. |
[29] | Hong, M.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2016, 55, 4188. |
[30] | Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 12987. |
[31] | Zhang, C.-J.; Hu, L.-F.; Wu, H.-L.; Cao, X.-H.; Zhang, X.-H. Macromolecules 2018, 51, 8705. |
[32] | Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Macromolecules 2018, 51, 9317. |
[33] | Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. Polym. Chem. 2019, 10, 1231. |
[34] | Walther, P.; Frey, W.; Naumann, S. Polym. Chem. 2018, 9, 3674. |
[35] | Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem. Int. Ed. 2009, 48, 9426. |
[36] | Tang, X.; Hong, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 14326. |
[37] | Shen, Y.; Xiong, W.; Li, Y.-Z.; Zhao, Z.-C.; Lu, H.; Li, Z.-B. CCS Chem. 2022, 3, 620. |
[38] | Zhang, Z.-H.; Wang, X.; Weng, B.; Zhang, Y.; Zhang, G.; Hong, M. ACS Polym. Au 2022. https://doi:10.1021/acspolymersau.2c00001 |
[39] | Gilsdorf, R. A.; Nicki, M. A.; Chen, E. Y.-X. Polym. Chem. 2020, 11, 4942. |
[40] | Wang, H. S.; Truong, N. P.; Pei, Z.; Coote, M. L.; Anastasaki, A. J. Am. Chem. Soc. 2022, 144, 4678. |
[41] | Zhu, J.-B.; Watson, E. M.; Tang, J.; Chen, E. Y.-X. Science 2018, 360, 398. |
[42] | Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Nat. Rev. Chem. 2019, 3, 514. |
[43] | Zhu, J. B.; Chen, E. Y. X. Angew. Chem. Int. Ed. 2019, 58, 1178. |
[44] | Zhu, J.-B.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2018, 57, 12558. |
[45] | Cywar, R. M.; Zhu, J.-B.; Chen, E. Y.-X. Polym. Chem. 2019, 10, 3097. |
[46] | Shi, C.; Li, Z.-C.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. Chem 2021, 7, 670. |
[47] | Shi, C.; Clarke, R. W.; McGraw, M. L.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 2264. |
[48] | Cywar, R. M.; Rorrer, N. A.; Mayes, H. B.; Maurya, A. K.; Tassone, C. J.; Beckham, G. T.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 5366. |
[49] | Schneiderman, D. K.; Hillmyer, M. A. Macromolecules 2016, 49, 2419. |
[50] | Brutman, J. P.; De Hoe, G. X.; Schneiderman, D. K.; Le, T. N.; Hillmyer, M. A. Ind. Eng. Chem. Res. 2016, 55, 11097. |
[51] | Schneiderman, D. K.; Vanderlaan, M. E.; Mannion, A. M.; Panthani, T. R.; Batiste, D. C.; Wang, J. Z.; Bates, F. S.; Macosko, C. W.; Hillmyer, M. A. ACS Macro Lett. 2016, 5, 515. |
[52] | Fahnhorst, G. W.; Hoye, T. R. ACS Macro Lett. 2018, 7, 143. |
[53] | Xu, T. Q.; Yu, Z. Q.; Zhang, X. M. Macromol. Chem. Phys. 2019, 220, 1. |
[54] | Li, J.; Liu, F.; Liu, Y.; Shen, Y.; Li, Z. Angew. Chem. Int. Ed. 2022, e202207105. |
[55] | Li, C.; Wang, L.; Yan, Q.; Liu, F.; Shen, Y.; Li, Z. Angew. Chem. Int. Ed. 2022, 61, e202201407. |
[56] | Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Macromolecules 2022, 55, 3860. |
[57] | Chen, X.-S.; Chen, G.-Q.; Tao, Y.-H.; Wang, Y.-Z.; Lv, X.-B.; Zhang, L.-Q.; Zhu, J.; Zhang, J.; Wang, X.-H. Acta Polym. Sin. 2019, 50, 1068. (in Chinese) |
[57] | (陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红, 高分子学报, 2019, 50, 1068.) |
[58] | Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147. |
[59] | Iovino, R.; Zullo, R.; Rao, M. A.; Cassar, L.; Gianfreda, L. Polym. Degrad. Stab. 2008, 93, 147. |
[60] | Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486. |
[61] | Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165. |
[62] | Alberti, C.; Enthaler, S. ChemistrySelect 2020, 5, 14759. |
[63] | Cederholm, L.; Wohlert, J.; Olsén, P.; Hakkarainen, M.; Odelius, K. Angew. Chem. Int. Ed. 2022, e202204531. |
[64] | Winnacker, M.; Rieger, B. Polym. Chem. 2016, 7, 7039. |
[65] | Shi, C. X.; Guo, Y. T.; Wu, Y. H.; Li, Z. Y.; Wang, Y. Z.; Du, F. S.; Li, Z. C. Macromolecules 2019, 52, 4260. |
[66] | Guo, Y.-T.; Shi, C.; Du, T.-Y.; Cheng, X.-Y.; Du, F.-S.; Li, Z.-C. Macromolecules 2022, 55, 4000. |
[67] | Yang, K.-K.; Wang, X.-L.; Wang, Y.-Z. J. Macromol. Sci. Part C 2002, 42, 373. |
[68] | Yang, K.-K., Wang, Y.-Z. Mater. China 2011, 8, 25. (in Chinese) |
[68] | (杨科珂, 王玉忠, 中国材料进展, 2011, 8, 25.) |
[69] | Nishida, H.; Yamashita, M.; Hattori, N.; Endo, T.; Tokiwa, Y. Polym. Degrad. Stab. 2000, 70, 485. |
[70] | Li, X. Y.; Zhou, Q.; Wen, Z. Bin; Hui, Y.; Yang, K. K.; Wang, Y. Z. Polym. Degrad. Stab. 2015, 121, 253. |
[71] | Wang, Y.-Z.; Zhou, Q.; Zheng, C.-Y.; Yang, K.-K.; Wang, X.-L.; Ding, S.-D.CNZL200510021203. X, 2007. |
[71] | (王玉忠, 周茜, 郑长义, 杨科珂, 汪秀丽, 丁颂东,CNZL200510021203. X, 2007.) |
[72] | Tian, G.-Q.; Yang, Z.-H.; Zhang, W.; Chen, S.-C.; Chen, L.; Wu, G.; Wang, Y.-Z. Green Chem. 2022, 24, 4490. |
[73] | Bechtold, K.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2001, 34, 8641. |
[74] | Li, K.; Li, Z.; Duan, S.; Shen, Y.; Li, Z. J. Polym. Sci. 2021, 1, https://doi.org/10.1002/pol.20210841. |
[75] | Labet, M.; Thielemans, W. Chem. Soc. Rev. 2009, 38, 3484. |
[76] | Iwabuchi, S.; Jaacks, V.; Kern, W. Die Makromol. Chemie 1976, 177, 2675. |
[77] | Sivalingam, G.; Madras, G. Polym. Degrad. Stab. 2003, 80, 11. |
[78] | Abe, H.; Takahashi, N.; Kim, K. J.; Mochizuki, M.; Doi, Y. Biomacromolecules 2004, 5, 1480. |
[79] | MacDonald, J. P.; Shaver, M. P. Polym. Chem. 2016, 7, 553. |
[80] | Lizundia, E.; Makwana, V. A.; Larrañaga, A.; Vilas, J. L.; Shaver, M. P. Polym. Chem. 2017, 8, 3530. |
[81] | Li, L.-G.; Wang, Q.-Y.; Zheng, Q.-Y.; Du, F.-S.; Li, Z.-C. Macromolecules 2021, 54, 6745. |
[82] | Fan, H.-Z.; Yang, X.; Chen, J.-H.; Tu, Y.-M.; Cai, Z.; Zhu, J.-B. Angew. Chem. Int. Ed. 2022, 61, e202117639. |
[83] | Tu, Y.-M.; Wang, X.-M.; Yang, X.; Fan, H.-Z.; Gong, F.-L.; Cai, Z.; Zhu, J.-B. J. Am. Chem. Soc. 2021, 143, 20591. |
[84] | Handbook of Polycarbonate Science and Technology, Eds.: LeGrand, D. G.; Bendler, J. T., Marcel Dekker, New York, 2000. |
[85] | Brunelle, D. J. ACS Symp. Ser. 2004, 898, 1. |
[86] | Li, L.-G.; Du, F.-S.; Li, Z.-C. Polym. Bull. 2019, 02, 90. (in Chinese) |
[86] | (李岭高, 杜福胜, 李子臣, 高分子通报, 2019, 02, 90.) |
[87] | Calafat, A. M.; Weuve, J.; Ye, X.; Jia, L. T.; Hu, H.; Ringer, S.; Huttner, K.; Hauser, R. Environ. Health Perspect. 2009, 117, 639. |
[88] | Biedermann, S.; Tschudin, P.; Grob, K. Anal. Bioanal. Chem. 2010, 398, 571. |
[89] | Song, B.; Qin, A.; Tang, B.-Z. Acta Chim. Sinica 2020, 78, 9. (in Chinese) |
[89] | (宋波, 秦安军, 唐本忠, 化学学报, 2020, 78, 9.) |
[90] | Qin, Y. J. Funct. Polym. 2019, 32, 558. (in Chinese) |
[90] | (秦玉升, 功能高分子学报, 2019, 32, 558.) |
[91] | Zhang, M.; Jia, X.; Chen, X. China Synth. Resin Plast. 2021, 38, 60. (in Chinese) |
[91] | (张梅, 贾学增, 陈曦, 合成树脂及塑料, 2021, 38, 60.) |
[92] | Lu, X.-Y.; Ma, B.-Z.; Luo, H.; Qi, H.; Li, Q.; Wu, G.-P. Chin. J. Appl. Chem. 2021, 38, 1189. (in Chinese) |
[92] | (陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋, 应用化学, 2021, 38, 1189.) |
[93] | Darensbourg, D. J. Chem. Rev. 2007, 107, 2388. |
[94] | Lu, X.-B.; Ren, W.-M.; Wu, G.-P. Acc. Chem. Res. 2012, 45, 1721. |
[95] | Childers, M. I.; Longo, J. M.; Van Zee, N. J.; LaPointe, A. M.; Coates, G. W. Chem. Rev. 2014, 114, 8129. |
[96] | Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. |
[97] | Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton. Trans. 2010, 39, 8363. |
[98] | Kim, J. G. Polym. Chem. 2020, 11, 4830. |
[99] | Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 287. |
[100] | Scharfenberg, M.; Hilf, J.; Frey, H. Adv. Funct. Mater. 2018, 28, 1704302. |
[101] | Liu, Y.; Lu, X.-B. J. Polym. Sci. 2022, 1. https://doi.org/10.1002/pol.20220118. |
[102] | Darensbourg, D. J.; Yeung, A. D. Polym. Chem. 2014, 5, 3949. |
[103] | Darensbourg, D. J. Polym. Degrad. Stab. 2018, 149, 45. |
[104] | Liu, Y.; Ren, W.-M.; Liu, J.; Lu, X.-B. Angew. Chem. Int. Ed. 2013, 52, 11594. |
[105] | Lu, X. B.; Wang, Y. Angew. Chem. Int. Ed. 2004, 43, 3574. |
[106] | Darensbourg, D. J.; Wei, S.-H. Macromolecules 2012, 45, 5916. |
[107] | Darensbourg, D. J.; Yeung, A. D. Macromolecules 2013, 46, 83. |
[108] | Darensbourg, D. J.; Wei, S. H.; Yeung, A. D.; Ellis, W. C. Macromolecules 2013, 46, 5850. |
[109] | Darensbourg, D. J.; Yeung, A. D.; Wei, S.-H. Green Chem. 2013, 15, 1578. |
[110] | Liu, Y.; Fang, L. M.; Ren, B. H.; Lu, X. B. Macromolecules 2020, 53, 2912. |
[111] | Singer, F. N.; Deacy, A. C.; McGuire, T. M.; Williams, C. K.; Buchard, A. Angew. Chem. Int. Ed. 2022, 61, e202201785. |
[112] | Liao, X.; Cui, F.; He, J.; Ren, W.-M.; Lu, X.-B.; Zhang, Y. Chem. Sci. 2022, 13, 6283. |
[113] | Yu, Y.; Gao, B.; Liu, Y.; Lu, X.-B. Angew. Chem. Int. Ed. 2022, 61, e202204492. |
[114] | Li, C.; Sablong, R. J.; van Benthem, R. A. T. M.; Koning, C. E. ACS Macro Lett. 2017, 6, 684. |
[115] | Liu, Y.; Zhou, H.; Guo, J. Z.; Ren, W. M.; Lu, X. B. Angew. Chem. Int. Ed. 2017, 56, 4862. |
[116] | Yu, Y.; Fang, L.-M.; Liu, Y.; Lu, X.-B. ACS Catal. 2021, 11, 8349. |
[117] | Tezuka, K.; Komatsu, K.; Haba, O. Polym. J. 2013, 45, 1183. |
[118] | Haba, O.; Itabashi, H. Polym. J. 2014, 46, 89. |
[119] | Guerin, W.; Diallo, A. K.; Kirilov, E.; Helou, M.; Slawinski, M.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S. M. Macromolecules 2014, 47, 4230. |
[120] | Diallo, A. K.; Kirillov, E.; Slawinski, M.; Brusson, J.-M.; Guillaume, S. M.; Carpentier, J.-F. Polym. Chem. 2015, 6, 1961. |
[121] | Ansari, I.; Singh, P.; Mittal, A.; Mahato, R. I.; Chitkara, D. Biomaterials 2021, 275, 120953. |
[122] | Saxon, D. J.; Gormong, E. A.; Shah, V. M.; Reineke, T. M. ACS Macro Lett. 2021, 10, 98. |
[123] | Olsén, P.; Undin, J.; Odelius, K.; Keul, H.; Albertsson, A.-C. Biomacromolecules 2016, 17, 3995. |
[124] | Zhang, W.; Dai, J.; Wu, Y.-C.; Chen, J.-X.; Shan, S.-Y.; Cai, Z.; Zhu, J.-B. ACS Macro Lett. 2022, 11, 173. |
[125] | Huang, J.; Olsén, P.; Svensson Grape, E.; Inge, A. K.; Odelius, K. Macromolecules 2022, 55, 608. |
[126] | Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Polym. Chem. 2019, 10, 172. |
[127] | Alberti, C.; Enthaler, S. Waste and Biomass Valorization 2020, 11, 4621. |
[128] | Nguyen, B.; Claveau-Mallet, D.; Hernandez, L. M.; Xu, E. G.; Farner, J. M.; Tufenkji, N. Acc. Chem. Res. 2019, 52, 858. |
[129] | Jehanno, C.; Demarteau, J.; Mantione, D.; Arno, M. C.; Ruipérez, F.; Hedrick, J. L.; Dove, A. P.; Sardon, H. Angew. Chem. Int. Ed. 2021, 60, 6710. |
[130] | Stefan, W.; Jasmine, I.; Jürgen, K. Sci. Adv. 2022, 4, eaat9669. |
[131] | Hatakeyama, K.; Kojima, T.; Funazukuri, T. J. Mater. Cycles Waste Manag. 2014, 16, 124. |
[132] | Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Nature 2021, 590, 423. |
[133] | Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. J. Environ. Chem. Eng. 2022, 10, 106867. |
[134] | Lim, J.; Pyun, J.; Char, K. Angew. Chem. Int. Ed. 2015, 54, 3249. |
[135] | Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Chem. Commun. 2016, 52, 5383. |
[136] | Cao, W.; Dai, F.; Hu, R.; Tang, B. Z. J. Am. Chem. Soc. 2020, 142, 978. |
[137] | Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y.-E.; Char, K.; Pyun, J. Nat. Chem. 2013, 5, 518. |
[138] | Zhang, C.-J.; Zhu, T.-C.; Cao, X.-H.; Hong, X.; Zhang, X.-H. J. Am. Chem. Soc. 2019, 141, 5490. |
[139] | Luo, M.; Zhang, X.-H.; Darensbourg, D. J. Acc. Chem. Res. 2016, 49, 2209. |
[140] | Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Polym. Rev. 2014, 54, 185. |
[141] | Liu, Y.; Jia, Y.; Wu, Q.; Moore, J. S. J. Am. Chem. Soc. 2019, 141, 17075. |
[142] | Yu, Y.; Yiling, N.; Kou, O.; Takuzo, A. Science 2018, 359, 72. |
[143] | Black, S. P.; Sanders, J. K. M.; Stefankiewicz, A. R. Chem. Soc. Rev. 2014, 43, 1861. |
[144] | Herrmann, A. Chem. Soc. Rev. 2014, 43, 1899. |
[145] | Tang, X.; Westlie, A. H.; Watson, E. M.; Chen, E. Y.-X. Science 2019, 366, 754. |
[146] | Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Nat. Chem. 2016, 8, 1047. |
[147] | Zhu, Y.; Romain, C.; Williams, C. K. Nature 2016, 540, 354. |
[148] | Hillmyer, M. A.; Tolman, W. B. Acc. Chem. Res. 2014, 47, 2390. |
[149] | Suzuki, M.; Makimura, K.; Matsuoka, S. Biomacromolecules 2016, 17, 1135. |
[150] | Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. J. Am. Chem. Soc. 2019, 141, 4928. |
[151] | Shi, C.; McGraw, M. L.; Li, Z. C.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. Sci. Adv. 2020, 6, 1. |
[152] | Xiong, W.; Chang, W.; Shi, D.; Yang, L.; Tian, Z.; Wang, H.; Zhang, Z.; Zhou, X.; Chen, E.-Q.; Lu, H. Chem 2020, 6, 1831. |
[153] | Shen, Y.; Li, D.; Kou, X.; Wang, R.; Liu, F.; Li, Z. Polym. Chem. 2022, 13, 1861. |
[154] | Jiang, Z.; Zhao, J.; Zhang, G. ACS Macro Lett. 2019, 8, 759. |
[155] | Orhan, B.; Tschan, M. J.-L.; Wirotius, A.-L.; Dove, A. P.; Coulembier, O.; Taton, D. ACS Macro Lett. 2018, 7, 1413. |
[156] | Wang, Y.; Li, M.; Chen, J.; Tao, Y.; Wang, X. Angew. Chem. Int. Ed. 2021, 60, 22547. |
[157] | Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Nat. Chem. 2022, 14, 294. |
[158] | Yue, T.-J.; Zhang, M.-C.; Gu, G.-G.; Wang, L.-Y.; Ren, W.-M.; Lu, X.-B. Angew. Chem. Int. Ed. 2019, 58, 618. |
[159] | Wang, Y.; Li, M.; Wang, S.; Tao, Y.; Wang, X. Angew. Chem. Int. Ed. 2021, 60, 10798. |
[160] | Bardwell, J. C. A.; Beckwith, J. Cell 1993, 74, 769. |
[161] | Wedemeyer, W. J.; Welker, E.; Narayan, M.; Scheraga, H. A. Biochemistry 2000, 39, 4207. |
[162] | Zhang, Q.; Shi, C. Y.; Qu, D.-H.; Long, Y. T.; Feringa, B. L.; Tian, H. Sci. Adv. 2018, 4, eaat8192. |
[163] | Zhang, Q.; Qu, D.-H.; Feringa, B. L.; Tian, H. J. Am. Chem. Soc. 2022, 144, 2022. |
[164] | Deng, Y.; Zhang, Q.; Feringa, B. L.; Tian, H.; Qu, D.-H. Angew. Chem. Int. Ed. 2020, 59, 5278. |
[165] | Zhang, Q.; Deng, Y.-X.; Luo, H.-X.; Shi, C.-Y.; Geise, G. M.; Feringa, B. L.; Tian, H.; Qu, D.-H. J. Am. Chem. Soc. 2019, 141, 12804. |
[166] | Zhang, Q.; Deng, Y.; Shi, C.-Y.; Feringa, B. L.; Tian, H.; Qu, D.-H. Matter 2021, 4, 1352. |
[167] | Pal, S.; Sommerfeldt, A.; Davidsen, M. B.; Hinge, M.; Pedersen, S. U.; Daasbjerg, K. Macromolecules 2020, 53, 4685. |
[168] | Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1. |
[169] | Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510. |
[170] | Hejl, A.; Scherman, O. A.; Grubbs, R. H. Macromolecules 2005, 38, 7214. |
[171] | Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. ACS Macro Lett. 2018, 7, 933. |
[172] | Neary, W. J.; Isais, T. A.; Kennemur, J. G. J. Am. Chem. Soc. 2019, 141, 14220. |
[173] | Feist, J. D.; Xia, Y. J. Am. Chem. Soc. 2020, 142, 1186. |
[174] | Feist, J. D.; Lee, D. C.; Xia, Y. Nat. Chem. 2022, 14, 53. |
[175] | Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Polym. Chem. 2014, 5, 3507. |
[176] | Sathe, D.; Zhou, J.; Chen, H.; Su, H.-W.; Xie, W.; Hsu, T.-G.; Schrage, B. R.; Smith, T.; Ziegler, C. J.; Wang, J. Nat. Chem. 2021, 13, 743. |
[177] | Chen, H.; Shi, Z.; Hsu, T.-G.; Wang, J. Angew. Chem. Int. Ed. 2021, 60, 25493. |
[178] | Zhou, J.; Sathe, D.; Wang, J. J. Am. Chem. Soc. 2022, 144, 928. |
[179] | Sathe, D.; Zhou, J.; Chen, H.; Schrage, B. R.; Yoon, S.; Wang, Z.; Ziegler, C. J.; Wang, J. Polym. Chem. 2022, 13, 2608. |
/
〈 |
|
〉 |