Design, Preparation and Evaluation of a Class of Liver-specific Gadolinium-Based Macrocyclic Magnetic Resonance Contrast Agents
Received date: 2022-05-15
Online published: 2022-07-19
Supported by
Natural Science Foundation of Jiangsu Province(BK20181486); Natural Science Foundation of the Jiangsu Higher Education Institutions(17KJB320001); Key Program of Nanjing Polytechnic Institute(NJPI-2022-02); Qing Lan Project of Jiangsu Province.
Liver-specific magnetic resonance imaging (MRI) contrast agents (CAs) are helpful in the early diagnosis of hepatocellular carcinoma. Linear CAs clinically used are at risk of causing nephrogenic systemic fibrosis (NSF) and gadolinium ion deposition in patients. In this work, a class of MRI CAs, which contain lipophilic group such as ethoxy aryl or methoxyphenyl and chelating group of DOTA-hydrazide (DOTAH, DOTA: 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid) for Gd3+ ion, were designed and prepared. Two synthetic routes (A and B) were discussed and route A was deemed superior. Eight complexes were prepared by one step in the yield of 60%~76% using Gd-DOTAH as main material. They belong to macrocyclic gadolinium-based CAs, and have a lower risk for the development of NSF and gadolinium ion deposition in brain. At the same time, the Gd3+ binding neutralized the charges of the three acetic groups of DOTAH, leading to nonionic CAs, which is beneficial to low osmotic pressure. Their longitudinal relaxivities r1 were from 3.7 to 5.4 L•mmol-1•s-1 at 0.5 T, higher than that of Gd-DOTA (3.6 L•mmol-1•s-1). And the relaxivity of complex 7h (Gd-DOTAH-EOPEI) (EOPEI: 1-(4-ethoxyphenyl)ethanimine) was the highest of 5.4 L•mmol-1•s-1, which was slightly better than clinically used liver- specific CAs of Gd-EOB-DTPA (5.3 L•mmol-1•s-1) (EOB: ethoxybenzyl; DTPA: diethylenetriaminepentaacetic acid) and 5d (4.7 L•mmol-1•s-1) we have synthesized before. In vivo liver targeting MRI studies in animals showed that complexes of 7b, 7g and 7h belong to liver-specific CAs. Among them, complex 7h was optimized. According to structure-activity relationship analysis, the introduction of ethoxyphenyl could obviously improve the liver targeting property. However, increasing the number of ethoxyl and introducing naphthalene ring could not improve the liver targeting property additionally. The introduction of pyridine, indole ring and methoxyphenyl could make CAs lose their liver-specific performance. However, it is worth noting that the methyl on the imine bond (C=N) is beneficial to the liver-specific performance of CAs. Combined with relaxivities, in vitro and in vivo MR imaging data, the lead compound was screened for Gd-DOTAH-EOPEI (7h).
Hongshun Sun , Jin Zhou , Cheng Liu , Xu Chen , Yijing Du , Yulong Li , Hong Jiang , Jianqiang Wang , Zhe Song , Cheng Guo . Design, Preparation and Evaluation of a Class of Liver-specific Gadolinium-Based Macrocyclic Magnetic Resonance Contrast Agents[J]. Acta Chimica Sinica, 2022 , 80(9) : 1250 -1255 . DOI: 10.6023/A22050226
[1] | Weissleder R.; Pittet M. J. Nature 2008, 452, 580. |
[2] | Vernuccio F.; Porrello G.; Cannella R.; Vernuccio L.; Brancatelli G. Clin. Imag. 2021, 70, 33. |
[3] | Wahsner J.; Gale E. M.; Rodríguez-Rodríguez A.; Caravan P. Chem. Rev. 2019, 119, 957. |
[4] | Helm L. Future Med. Chem. 2010, 2, 385. |
[5] | Hermann P.; Kotek J.; Kubíček V.; Lukeš I. Dalton Trans. 2008, 23, 3027. |
[6] | Huckle J. E.; Altun E.; Jay M.; Semelka R. C. Invest. Radiol. 2016, 51, 236. |
[7] | Wei H.; Bruns O. T.; Kaul M. G.; Hanse E. C.; Barch M.; Wisniowska A.; Chen O.; Chen Y.; Li N.; Okada S.; Cordero J. M.; Heine M.; Farrar C. T.; Montana D. M.; Adam G.; Ittrich H.; Jasanoff A.; Nielsen P.; Bawendi M. G. PNAS 2017, 114, 2325. |
[8] | Penfield J.; Reilly R. Nat. Rev. Nephrol. 2007, 3, 654. |
[9] | Perez-Rodriguez J.; Lai S.; Ehst B. D.; Fine D. M.; Bluemke D. A. Radiology 2009, 250, 371. |
[10] | Kanal E.; Tweedle M. F. Radiology 2015, 275, 630. |
[11] | Thian Y. L.; Riddell A. M.; Koh D. M. Cancer Imaging 2013, 13, 567. |
[12] | Baek A. R.; Kim H. K.; Park S.; Lee G. H.; Kang H. J.; Jung J. C.; Park J. S.; Ryeom H. K.; Kim T. J.; Chang Y. J. Med. Chem. 2017, 60, 4861. |
[13] | Chen K.; Li P.; Zhu C.; Xia Z.; Xia Q.; Zhong L.; Xiao B.; Cheng T.; Wu C.; Shen C.; Zhang X.; Zhu J. J. Med. Chem. 2021, 64, 9182. |
[14] | Wang J.; Wang H.; Ramsay I. A.; Erstad D. J.; Fuchs B. C.; Tanabe K. K.; Caravan P.; Gale E. M. J. Med. Chem. 2018, 61, 8811. |
[15] | Sun H.-S.; Li Y.-L.; Jiang H.; Guo C.; Shen L.-J. Chin. J. Org. Chem. 2018, 38, 1779.(in Chinese) |
[15] | (孙宏顺, 李玉龙, 蒋蕻, 郭成, 沈临江, 有机化学, 2018, 38, 1779.) |
[16] | Zhou J.; Sun H.-S.; Li Y.-L.; Jiang H.; Guo C.; Shen L.-J. Chin. J. Org. Chem. 2021, 41, 2767.(in Chinese) |
[16] | (周进, 孙宏顺, 李玉龙, 蒋蕻, 郭成, 沈临江, 有机化学, 2021, 41, 2767.) |
[17] | Sun H.-S.; Zhou J.; Li Y.-L.; Jiang H.; Zhang Y.; Wang J.-Q.; Guo C.; Shen L.-J. Chin. J. Org. Chem. 2019, 39, 778.(in Chinese) |
[17] | (孙宏顺, 周进, 李玉龙, 蒋蕻, 张艳, 王建强, 郭成, 沈临江, 有机化学, 2019, 39, 778.) |
[18] | Cresens E.; Ni Y. C.; Adriaens P.; Verbruggen A.; Marchal, G. WO 2002038546, 2002 [Chem. Abstr]. 2002, 136, 379071] |
[19] | Zhang J.-D.; Curry, K. WO 2016090491, 2016 [Chem. Abstr]. 2016, 165, 112684] |
[20] | Frullano L.; Tejerina B.; Meade T. J. Inorg. Chem. 2006, 45, 8489. |
[21] | Aime S.; Caravan P. J. Magn. Reson. Imaging 2009, 30, 1259. |
[22] | Elst L. V.; Maton F.; Laurent S.; Seghi F.; Chapelle F.; Muller R. N. Magn. Reson. Med. 1997, 38, 604. |
/
〈 |
|
〉 |