Methods for Adjusting Mechanoluminescence Behaviors on Crystals of Purely Organic Small Molecules
Received date: 2022-05-25
Online published: 2022-07-28
Supported by
Natural Science Fund of Zhejiang Province(LY19B020015)
Although mechanoluminescence (ML) phenomenon has been discovered for more than 400 years, it has not gone into the research focus once again until recent decades. This type of solid-state optical effect which is heavily dependent on molecular packing has been applied in some optoelectrical materials and possesses large potentials in the future high-tech fields. Currently, as the researches on organic functional materials flourish, more and more attentions have been transferred from ML-active inorganic, polymeric, organometallic compounds and ceramics onto ML-active crystals of purely organic small molecules. Due to the gradually deepened understanding for ML-active crystals of purely organic small molecules, the research interests have shifted from how to obtain ML-active compounds onto how to design and develop molecules so that ML-active purely organic crystals with differentiated ML behaviors can be produced. In this review, some methods for generating distinct ML performances, including physical adjustment, chirality activation, structural modification, polymorph formation, host-guest doping and so on are summarized. Meanwhile, how molecular packing and intermolecular interactions make impacts on ML effect in individual systems are also discussed herein and some constructive outlook about the future progress in aspect of ML study is accordingly proposed.
Yanrong Jia , Guanlei Gao , Min Xia . Methods for Adjusting Mechanoluminescence Behaviors on Crystals of Purely Organic Small Molecules[J]. Acta Chimica Sinica, 2022 , 80(9) : 1309 -1321 . DOI: 10.6023/A22050240
[1] | Ciniero A.; Rouzic J. L.; Baikie I.; Reddyhoff T. Wear 2017, 374, 113. |
[2] | Xu C.-N.; Watanabe T.; Akiyama M.; Zheng X.-G. Appl. Phys. Lett. 1999, 74, 2414. |
[3] | Sage I.; Badcock R.; Humberstone L.; Geddes N.; Kemp M.; Bourhill G. Smart Mater. Struct. 1999, 8, 504. |
[4] | Zhuang Y.; Xie R.-J. Adv. Mater. 2021, 33, 2005925. |
[5] | Sage I.; Badcock R.; Humberstone L.; Geddes N.; Kemp M.; Bourhill G. Smart Mater. Struct. 1999, 8, 504. |
[6] | Terasaki N.; Zhang H.; Yamada H.; Xu C.-N. Chem. Commun. 2011, 47, 8034. |
[7] | Terasaki N.; Yamada H.; Xu C.-N. Catal. Today 2013, 201, 203. |
[8] | Xu H.; Wang F.; Wang Z.; Zhou H.; Zhang G.; Zhang J.; Wang J.; Yang S. Tribol. Lett. 2019, 67, 1. |
[9] | Wang X.; Zhang H.; Yu R.; Dong L.; Peng D.; Zhang A.; Zhang Y.; Liu H.; Pan C.; Wang Z. L. Adv. Mater. 2015, 27, 2324. |
[10] | Wang M.; Wu H.; Dong W.; Lian J.; Wang W.; Zhou J.; Zhang J. Inorg. Chem. 2022, 61, 2911. |
[11] | Wang X.; Zhang H.; Yu R.; Dong L.; Peng D.; Zhang A.; Zhang Y.; Liu H.; Pan C.; Wang Z. L. Adv. Mater. 2015, 27, 2324. |
[12] | Jeong S. M.; Song S.; Joo K. I.; Kim J.; Hwang W.; Jeong J.; Kim H. Energy Environ. Sci. 2014, 7, 3338. |
[13] | Terasaki N.; Xu C.-N.; Imai Y.; Yamada H. Jpn. J. Appl. Phys. 2007, 46, 2385. |
[14] | Patel D. K.; Cohen B.; Etgar L.; Magdassi S. Mater. Horiz. 2018, 5, 708. |
[15] | Xu C.-N.; Watanabe T.; Akiyama M.; Zheng X. G. Appl. Phys. Lett. 1999, 74, 1236. |
[16] | Zhang X.; Li Z.; Du W.; Zhao Y.; Wang W.; Pang L; Chen L.; Yu A.; Zhai J. Nano Energy 2022, 96, 107115. |
[17] | Zink J. I. Acc. Chem. Res. 1978, 11, 289. |
[18] | Zink J. I.; Hardy G. E.; Sutton J. E. J. Phys. Chem. 1976, 80, 248. |
[19] | Chandra B. P.; Chandra V. K.; Jha P.; Patel R.; Shende S. K.; Thaker S.; Baghel R. N. J. Lumin. 2012, 132, 2012. |
[20] | Qian X.; Cai Z.; Su M.; Li F.; Fang W.; Li Y.; Zhou X.; Li Q.; Feng X.; Li W.; Hu X.; Wang X.; Pan C.; Song Y. Adv. Mater. 2018, 30, 1800291. |
[21] | Feng A.; Smet P. F. Materials 2018, 11, 484. |
[22] | Zhang H.; Wei Y.; Huang X.; Huang W. J. Lumin. 2019, 207, 137. |
[23] | Szukalski A.; Kabanski A.; Goszyk J.; Adaszynski M.; Kaczmarska M.; Gaida R.; Wyskiel M.; Mysliwiec J. Materials 2021, 14, 7142. |
[24] | Liu M.; Wu Q.; Shi H.; An Z.; Huang W. Acta Chim. Sinica 2018, 76, 246.(in Chinese) |
[24] | (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
[25] | Bünzli J.-C. G.; Wong K.-L. J. Rare Earths 2018, 36, 1. |
[26] | Qin Y.; She P.; Huang X.; Huang W.; Zhao Q. Coordin. Chem. Rev. 2020, 416, 213331. |
[27] | Qasem A.; Xiong P.; Ma Z.; Peng M.; Yang Z. Laser & Photon. Rev. 2021, 15, 2100276. |
[28] | Xie Y.; Li Z. Mater. Chem. Front. 2020, 4, 317. |
[29] | Mukherjee S.; Thilagar P. Angew. Chem. Int. Ed. 2019, 58, 7922. |
[30] | Li A.-S.; Wang J.-F.; Li Z. Chinese J. Lumin. 2021, 42, 283. |
[31] | Di B.-H.; Chen Y.-L. Chin. Chem. Lett. 2018, 29, 245. |
[32] | Fang M.; Yang J.; Li Z. Progress Mater. Sci. 2022, 125, 100914. |
[33] | Wang J.; Li Z. Acta Chim. Sinica 2021, 79, 575.(in Chinese) |
[33] | (王金凤, 李振, 化学学报, 2021, 79, 575.) |
[34] | Chang K.; Li Q. Q.; Li Z. Chin. J. Org. Chem. 2020, 40, 3656.(in Chinese) |
[34] | (常凯, 李倩倩, 李振, 有机化学, 2020, 40, 3656.) |
[35] | Li Q. Q.; Li Z. Acc. Chem. Res. 2020, 53, 962. |
[36] | Huang Q.; Mei X.; Xie Z.; Wu D.; Yang S.; Gong W.; Chi Z.; Lin Z.; Ling Q. J. Mater. Chem. C 2019, 7, 2530. |
[37] | Jiang Y.; Chang X.; Xie W.; Huang G.; Li B. L. Mater. Chem. Front. 2021, 5, 885. |
[38] | Li W.; Huang Q.; Mao Z.; Li Q.; Jiang L.; Xie Z.; Xu R.; Yang Y.; Zhao J.; Yu T.; Zhang Y.; Aldred M. P.; Chi Z. Angew. Chem. Int. Ed. 2018, 57, 12727. |
[39] | Sun Q.; Zhang K.; Zhang Z.; Tang L.; Xie Z.; Chi Z.; Xue S.; Zhang H.; Yang W. Chem. Commun. 2018, 54, 8206. |
[40] | Zhang H.; Ma H.; Huang W.; Gong W.; He Z.; Huang G.; Li B. S.; Tang B. Z. Mater. Horiz. 2021, 8, 2816. |
[41] | Wang C.; Xu B.; Li M.; Chi Z.; Xie Y.; Li Q.; Li Z. Mater. Horiz. 2016, 3, 220. |
[42] | Wang C.; Yu Y.; Chai Z.; He F.; Wu C.; Gong Y.; Han M.; Li Q.; Li Z. Mater. Chem. Front. 2019, 3, 32. |
[43] | Yu Y.; Fan Y.; Wang C.; Wei Y.; Liao Q.; Li Q.; Li Z. J. Mater. Chem. C 2019, 7, 13759. |
[44] | Wang J.; Chai Z.; Wang J.; Wang C.; Han M.; Liao Q.; Huang A.; Lin P.; Li C.; Li Q.; Li Z. Angew. Chem. Int. Ed. 2019, 58, 17297. |
[45] | Xu B.; He J.; Mu Y.; Zhu Q.; Wu S.; Wang Y.; Zhang Y.; Jin C.; Lo C.; Chi Z.; Lien A.; Liu S.; Xu J. Chem. Sci. 2015, 6, 3236. |
[46] | Jiang Y.; Wang J.; Huang G.; Li Z.; Li B.; Tang B. Z. J. Mater. Chem. C 2019, 7, 11790. |
[47] | Xie Z.; Yu T.; Chen J.; Ubba E.; Wang L.; Mao Z.; Su T.; Zhang Y.; Aldred M. P.; Chi Z. Chem. Sci. 2018, 9, 5787. |
[48] | Liu X.; Jia Y.; Jiang H.; Gao G.; Xia M. Acta Chim. Sinica 2019, 77, 1194.(in Chinese) |
[48] | (刘笑静, 贾彦荣, 江豪, 高贯雷, 夏敏, 化学学报, 2019, 77, 1194.) |
[49] | Chen Y.; Xu C.; Xu B.; Mao Z.; Li J.-A.; Yang Z.; Peethani N. R.; Liu C.; Shi G.; Gu F. L.; Zhang Y.; Chi Z. Mater. Chem. Front. 2019, 3, 1800. |
[50] | Nakayama H.; Nishida J.; Takada N.; Sato H.; Yamashita Y. Chem. Mater. 2012, 24, 671. |
[51] | Nishida J.; Ohura H.; Kita H.; Hasegawa H.; Kawase T.; Takada N.; Sato H.; Sei Y.; Yamashita Y. J. Org. Chem. 2016, 81, 433. |
[52] | Tu J.; Fan Y.; Wang J.; Li X.; Liu F.; Han M.; Wang C.; Li Q.; Li Z. J. Mater. Chem. C 2019, 7, 12256. |
[53] | Wang C.; Yu Y.; Yuan Y.; Ren C.; Liao Q.; Wang J.; Chai Z.; Li Q.; Li Z. Matter 2020, 2, 181. |
[54] | Li J.-A.; Zhou J.; Mao Z.; Xie Z.; Yang Z.; Xu B.; Liu C.; Chen X.; Ren D.; Pan H.; Shi G.; Zhang Y.; Chi Z. Angew. Chem. Int. Ed. 2018, 57, 6449. |
[55] | Yue L.; Wang Y.; Ma J.; Yuan S.; Xue Y.; Sun Q.; Yang W. Mater. Chem. Front. 2021, 5, 5497. |
[56] | Wu W.; Narisawa T.; Hayashi S. Jpn. J. Appl. Phys. 2001, 40, 1294. |
[57] | Miao J.; Zhang Z.; Cui Z.; Zhang M. Mater. Adv. 2022, 3, 2692. |
[58] | Huang G.; Chang X.; Jiang Y.; Lin B.; Li B. S.; Tang B. Z. Mater. Chem. Front. 2020, 4, 1720. |
[59] | Jiang H.; Liu X.-J.; Jia R.-R.; Xu T.-H.; Xia M. RSC Adv. 2019, 9, 30381. |
[60] | Tu L.; Che W.; Li S.; Li X.; Xie Y.; Li Z. J. Mater. Chem. C 2021, 9, 12124. |
[61] | Yu Y.; Fan F.; Wang C.; Wei Y.; Liao Q.; Li Q.; Li Z. Mater. Chem. Front. 2021, 5, 817. |
[62] | Jia Y.-R.; Jiang H.; Gao G.-L.; Xu K.; Xia M. Dyes Pigm. 2021, 194, 10951. |
[63] | Liu P.; Chen J.; Xu C.; Hao H.; Xu B.; Hu D.; Shi G.; Chi Z. Dyes Pigm. 2020, 174, 108093. |
[64] | Fang M.; Yang J.; Liao Q.; Gong Y.; Xie Z.; Chi Z.; Peng Q.; Li Q.; Li Z. J. Mater. Chem. C 2017, 5, 9879. |
[65] | Yu Y.; Wang C.; Wei Y.; Fan Y.; Yang J.; Wang J.; Han M.; Li Q.; Li Z. Adv. Optical Mater. 2019, 7, 1900505. |
[66] | Liu F.; Tu J.; Wang X.; Wang J.; Gong Y.; Han M.; Dang X.; Liao Q.; Peng Q.; Li Q.; Li Z. Chem. Commun. 2018, 54, 5598. |
[67] | Liu X.-J.; Jiang H.; Jia Y.-R.; Xia M. Dyes Pigm. 2020, 172, 107845. |
[68] | Tu J.; Liu F.; Wang J.; Li X.; Gong Y.; Fan Y.; Han M.; Li Q.; Li Z. ChemPhotoChem 2019, 3, 133. |
[69] | Arivazhagan C.; Maity A.; Bakthavachalam K.; Jana A.; Panigrahi S. K.; Suresh E.; Das A.; Ghosh S. Chem. Eur. J. 2017, 23, 7046. |
[70] | Ruan Z.; Dang Q.; Chen X.; Deng C.; Gao Z.; Lin J.; Liu S.; Chen Y.; Tian Z.; Li Z. Adv. Optical Mater. 2021, 9, 2001549. |
[71] | Liu F.; Tu Z.; Fan Y.; Li Q.; Li Z. ACS Omega 2019, 4, 18609. |
[72] | Xu T.; Liu T.; Mu Y.; Wang Y.-F.; Chi Z.; Lo C.-C.; Liu S. Zhang Y.; Lien A.; Xu J. Angew. Chem. Int. Ed. 2015, 54, 874. |
[73] | Mukherjee S.; Thilagar P. Chem. Commun. 2016, 52, 1070. |
[74] | Neea K. K.; Sudhakar P.; Dipak K.; Thilagar P. Chem. Commun. 2017, 53, 3641. |
[75] | Xu T.; Li W.; He J.; Wu S.; Zhu Q.; Yang Z.; Wu Y.-C.; Zhang Y.; Jin C.; Lu P.-Y.; Chi Z.; Liu S.; Xu J.; Bryced M. R. Chem. Sci. 2016, 7, 5307. |
[76] | Li D.; Yang J.; Wang Y.; Li X.; Zhu D.; Fang M.; Li Z. J. Mater. Chem. C 2020, 8, 10852. |
[77] | Dang Q.; Hu L.; Wang J.; Zhang Q.; Han M.; Luo S.; Gong Y.; Wang C.; Li Q.; Li Z. Chem. Eur. J. 2019, 25, 7031. |
[78] | Gong Y.-B.; Zhang P.; Gu Y.; Wang J. Q.; Han M.-M.; Chen C.; Zhan X.-J.; Xie Z.-L.; Zou B.; Peng Q.; Chi Z.-G.; Li Z. Adv. Optical Mater. 2018, 6, 1800198. |
[79] | Sun Q.; Tang L.; Zhang Z.; Zhang K.; Xie Z.; Chi Z.; Zhang H.; Yang W. Chem. Commun. 2018, 54, 94. |
[80] | Yang J.; Ren Z.; Xie Z.; Liu Y.; Wang C.; Xie Y.; Peng Q.; Xu B.; Tian W.; Zhang F.; Chi Z.; Li Q.; Li Z. Angew. Chem. Int. Ed. 2017, 56, 880. |
[81] | Zhan L.; Chen Z.; Gong S.; Xiang Y.; Ni F.; Zeng X.; Xie G.; Yang C. Angew. Chem. Int. Ed. 2019, 58, 17651. |
[82] | Gao G.-L.; Jia Y.-R.; Jiang H.; Xia M. Dyes Pigm. 2021, 186, 109030. |
[83] | Liu X.-J.; Gao G.-L.; Jiang H.; Jia Y.-R.; Xia M. RSC Adv. 2020, 10, 23187. |
[84] | Wang W.; Wang Z.; Zhang J.; Zhou J.; Dong W.; Wang Y. Nano Energy 2022, 94, 106920. |
[85] | Deng H.; Yang Z.; Li G.; Ma D.; Xie Z.; Li W.; Mao Z.; Zhao J.; Yang Z.; Zhang Y.; Chi Z. Chem. Eng. J. 2022, 438, 135519. |
/
〈 |
|
〉 |