Review

Advances in Organic Electrochemical Synthesis

  • Zhenhua Wang ,
  • Cong Ma ,
  • Ping Fang ,
  • Haichao Xu ,
  • Tiansheng Mei
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received date: 2022-06-14

  Online published: 2022-08-08

Supported by

National Key Research & Development Program of China(2021YFA1500100); National Natural Science Foundation of China(91956112); National Natural Science Foundation of China(21572245); Program of Shanghai Science and Technology Committee(17JC1401200); Program of Shanghai Science and Technology Committee(18JC1415600)

Abstract

Organic electrochemical synthesis has become a useful and environmentally friendly alternative to traditional organic synthesis and has been applied to oxidation, reduction, or redox neutral transformation. By dialing in the electric current or electrode potential, it is possible to achieve some challenging transformations under mild reaction conditions. With the increasing awareness of energy efficiency and environmental protection, organic electrochemical synthesis has attracted much attention in recent years. However, electrochemical synthesis faces several challenges including electrode passivation, limited reaction types, the difficulty of controlling reactivity and selectivity, and so on. This review focuses on electrochemical synthesis in organic solution system, and it summarizes recent efforts in addressing these challenges through direct electrolysis and indirect electrolysis. In direct electrolysis, the strategies include the rational design of electrochemical electrolysis reactions, change of electrochemical electrolysis modes and equipment, or merging of electrochemical technology with other novel synthetic technologies. In terms of indirect electrolysis, organic compounds or transition metals are mainly used as molecular electrocatalysts to shuttle the electrons between electrodes and substrates and control the reaction reactivity and selectivity, affording some challenging chemical transformations.

Cite this article

Zhenhua Wang , Cong Ma , Ping Fang , Haichao Xu , Tiansheng Mei . Advances in Organic Electrochemical Synthesis[J]. Acta Chimica Sinica, 2022 , 80(8) : 1115 -1134 . DOI: 10.6023/A22060260

References

[1]
(a) Volta, A. G. A. J. Nat. Philos. Chem. Arts 1800, 4, 179.
[1]
(b) Faraday, M. Ann. Phys. 1834, 109, 481.
[1]
(c) Kolbe, H. J. Prakt. Chem. 1847, 41, 137.
[2]
(a) Moissan, H. Comptesrendushebdomadaires des śeances de l ?Acaďemiedes sciences. 1886, 102, 1543.
[2]
(b) Davy, H. I. Phil. Trans. R. Soc. London 1808, 98, 1.
[3]
(a) Botte, G. G. Electrochem. Soc. Interface 2014, 23, 49.
[3]
(b) Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.
[3]
(c) Pütter, H.; Hannebaum, H. Ger. Pat. 19618854 A1, 1997.
[3]
(d) Pütter, H.; Hannebaum, H. US Pat., 6063256, 2000.
[4]
(a) Mihelcic, J.; Moeller, K. D. J. Am. Chem. Soc. 2003, 125, 36.
[4]
(b) Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[4]
(c) Peters, B. K.; Rodriguez, K. X.; Reisberg, S. H.; Beil1, S. B.; Hickey, D. P.; Kawamata, Y.; Collins, M.; Starr, J.; Chen, L.; Udyavara, S.; Klunder, K.; Gorey, T. J.; Anderson, S. L.; Neurock, M.; Minteer, S. D.; Baran, P. S. Science 2019, 363, 838.
[5]
Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[6]
Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Res. 2020, 53, 72.
[7]
(a) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[7]
(b) Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058.
[8]
(a) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
[8]
(b) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[9]
(a) Roeckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
[9]
(b) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386.
[10]
Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[11]
(a) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547.
[11]
(b) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941.
[12]
Gandeepan, P.; Finger, L. H.; Meyer, T. H.; Ackermann, L. Chem. Soc. Rev. 2020, 49, 4254.
[13]
Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Cent. Sci. 2021, 7, 415.
[14]
(a) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105.
[14]
(b) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[15]
Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.
[16]
Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710.
[17]
Chang, X.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 12612.
[18]
Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738.
[19]
Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[20]
(a) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834.
[20]
(b) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561.
[21]
Malapit, C. A.; Prater, M. B.; Cabrera-Pardo, J. R.; Li, M.; Pham, T. D.; McFadden, T. P.; Blank, S.; Minteer, S. D. Chem. Rev. 2022, 122, 3180.
[22]
(a) Elsherbini, M.; Wirth, T. Acc. Chem. Res. 2019, 52, 3287.
[22]
(b) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
[22]
(c) Hilt, G. ChemElectroChem 2020, 7, 395.
[22]
(d) Sbei, N.; Hardwick, T.; Ahmed, N. ACS Sustain. Chem. Eng. 2021, 9, 6148.
[22]
(e) Zhang, W.; Hong, N.; Song, L.; Fu, N. Chem. Rec. 2021, 21, 2574.
[22]
(f) Ma, C.; Fang, P.; Liu, D.; Jiao, K.-J.; Gao, P.-S.; Qiu, H.; Mei, T.-S. Chem. Sci. 2021, 12, 12866.
[22]
(g) Ma, C.; Fang, P.; Liu, D.; Jiao, K.-J.; Gao, P.-S.; Qiu, H.; Mei, T.-S. Sci. Bull. 2021, 66, 2412.
[22]
(h) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120.
[22]
(i) Claraz, A.; Masson, G. ACS Org. Inorg. Au 2022, 2, 126.
[23]
Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
[24]
Steckhan, E. Angew. Chem. Int. Ed. Engl. 1986, 28, 683.
[25]
(a) Kolbe, H. Prakt. Chem. 1847, 41, 138.
[25]
(b) Tafel, J.; Hahl, H. Ber. Dtsch. Chem. Ges. 1907, 40, 3312.
[26]
Shono, T. Tetrahedron 1984, 40, 811.
[27]
Simons, J. H. J. Electrochem. Soc. 1949, 95, 47.
[28]
Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.
[29]
Cao, W.; Ge, W.; Huang, W. Chin. J. Org. Chem. 1987, 7, 133. (in Chinese)
[29]
(曹文娟, 葛文正, 黄维垣, 有机化学, 1987, 7, 133.)
[30]
Wang, Z.; Zhou, W. Chin. J. Org. Chem. 1988, 8, 372. (in Chinese)
[30]
(王志勤, 周文娟, 有机化学, 1988, 8, 372.)
[31]
Wang, Z.; Zhou, W. Chin. J. Org. Chem. 1988, 8, 462. (in Chinese)
[31]
(王志勤, 周文娟, 有机化学, 1988, 8, 462.)
[32]
Du, X.; Yang, B.; Hu, C.; Qian, D.; Shen, T.; Tang, R. Acta Chim. Sinica 1989, 47, 788. (in Chinese)
[32]
(杜雪梅, 杨冰华, 胡昌明, 钱道荪, 沈天憬, 唐瑞平, 化学学报, 1989, 47, 788.)
[33]
Shen, X.; Hu, C. Chin. J. Org. Chem. 1993, 13, 122. (in Chinese)
[33]
(沈雪明, 胡昌明, 有机化学, 1993, 13, 122.)
[34]
Wang, H.; He, M.; Li, Y.; Zhang, H.; Yang, D.; Nagasaka, M.; Lv, Z.; Guan, Z.; Cao, Y.; Gong, F.; Zhou, Z.; Zhu, J.; Samanta, S.; Chowdhury, A. D.; Lei, A. J. Am. Chem. Soc. 2021, 143, 3628.
[35]
Liu, S.; Cheng, X. Nature Commun. 2022, 13, 425.
[36]
Li, L.; Li, Y.; Fu, N.; Zhang, L.; Luo, S. Angew. Chem. Int. Ed. 2020, 59, 14347.
[37]
Chang, X.; Zhang, J.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 18500.
[38]
Wu, T.; Nguyen, B. H.; Daugherty, M. C.; Moeller, K. D. Angew. Chem. Int. Ed. 2019, 58, 3562.
[39]
Hartmer, M. F.; Waldvogel, S. R. Chem. Commun. 2015, 51, 16346.
[40]
Dong, X.; Roeckl, J. L.; Waldvogel, S. R.; Morandi, B. Science 2021, 371, 507.
[41]
Mo, Y.; Lu, Z.; Rughoobur, G.; Patil, P.; Gershenfeld, N.; Akinwande, A. I.; Buchwald, S. L.; Jensen, K. F. Science 2020, 368, 1352.
[42]
(a) Huang, C.; Qian, X.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 6650.
[42]
(b) Huang, C.; Li, Z.-Y.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2021, 60, 11237.
[43]
(a) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
[43]
(b) Pokhrel, T.; Bijaya, B. K.; Giri, R.; Adhikari, A.; Ahmed, N. Chem. Rec. 2022, 22, e202100338.
[44]
(a) Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cent. Sci. 2020, 6, 1317.
[44]
(b) Meyer, T. H.; Choi, I.; Tian, C.; Ackermann, L. Chem 2020, 6, 2484.
[44]
(c) Wang, F.; Stahl, S. S. Angew. Chem. Int. Ed. 2019, 58, 6385.
[44]
(d) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318.
[44]
(e) Capaldo, L.; Quadri, L. L.; Ravelli, D. Angew. Chem. Int. Ed. 2019, 58, 17508.
[44]
(f) Zhang, W.; Carpenter, K. L.; Lin, S. Angew. Chem. Int. Ed. 2020, 59, 409.
[44]
(g) Barham, J. P.; Konig, B. Angew. Chem. Int. Ed. 2020, 59, 11732.
[44]
(h) Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem. Eur. J. 2020, 26, 3241.
[44]
(i) Yu, Y.; Guo, P.; Zhong, J.-S.; Yuan, Y.; Ye, K.-Y. Org. Chem. Front. 2020, 7, 131.
[44]
(j) Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[44]
(k) Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020, 142, 2087.
[44]
(l) Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093.
[44]
(m) Niu, L.; Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi, R.; Chen, H.; Chowdhury, A. D.; Lei, A. J. Am. Chem. Soc. 2020, 142, 17693.
[45]
Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 4592.
[46]
Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626.
[47]
Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 14275.
[48]
(a) Rein, J.; Annand, J. R.; Wismer, M. K.; Fu, J.; Siu, J. C.; Klapars, A.; Strotman, N. A.; Kalyani, D.; Lehnherr, D.; Lin, S. ACS Cent. Sci. 2021, 7, 1347.
[48]
(b) Wills, A. G.; Charvet, S.; Battilocchio, C.; Scarborough, C. C.; Wheelhouse, K. M. P.; Poole, D. L.; Carson, N.; Vantourout, J. C. Org. Process Res. Dev. 2021, 25, 2587.
[49]
Qiu, W.; Wang, Z. J. Chem. Soc. Chem. Commun. 1989, 356.
[50]
Wu, W.-M.; Wu, Y.-L. J. Chem. Soc. Perkin Trans. 2000, 1, 4279.
[51]
Lian, F.; Xu, K.; Zeng, C. Chem. Rec. 2021, 21, 1.
[52]
Li, Y.; Sun, C.-C.; Zeng, C.-C. J. Electroanal. Chem. 2020, 861, 113941.
[53]
Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
[54]
Zhang, Z.; Su, J.; Zha, Z.; Wang, Z. Chem. Commun. 2013, 49, 8982.
[55]
Steckhan, E. Angew. Chem. Int. Ed. 1986, 25, 683.
[56]
Cai, C.-Y.; Xu, H.-C. Nat. Commun. 2018, 9, 3551.
[57]
Cai, C.-Y.; Shu, X.-M.; Xu, H.-C. Nat. Commun. 2019, 10, 4953.
[58]
Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 14070.
[59]
Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039.
[60]
Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 2226
[61]
Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 9168.
[62]
Wu, Z.-J.; Xu, H.-C. Angew. Chem. Int. Ed. 2017, 56, 4734.
[63]
Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
[64]
Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. ACS Catal. 2017, 7, 2730.
[65]
Ma, Y.; Yao, X.; Zhang, L.; Ni, P.; Cheng, R.; Ye, J. Angew. Chem. Int. Ed. 2019, 58, 16548.
[66]
Gao, P.-S.; Weng, X.-J.; Wang, Z.-H.; Zheng, C.; Sun, B.; Chen, Z.-H.; You, S. L.; Mei, T.-S. Angew. Chem. Int. Ed. 2020, 59, 15254.
[67]
Wang, Z.-H.; Gao, P.-S.; Wang, X.; Gao, J.-Q.; Xu, X.-T.; He, Z.; Ma, C.; Mei, T.-S. J. Am. Chem. Soc. 2021, 143, 15599.
[68]
Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292.
[69]
(a) Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.
[69]
(b) Aiso, H.; Kochi, T.; Mutsutani, H.; Tanabe, T.; Shigeru Nishiyama, S.; Kakiuchi, F. J. Org. Chem. 2012, 77, 7718.
[69]
(c) Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2017, 82, 8716.
[70]
(a) Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. H. Eur. J. Org. Chem. 2012, 2114.
[70]
(b) Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Tufatullin, A. I.; Kataeva, O. N.; Vicic, D. A.; Budnikova, Y. H. Organometallics 2013, 32, 4785.
[71]
Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293.
[72]
Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.
[73]
Zhang, L.; Hu, X. Chem. Sci. 2020, 11, 10786.
[74]
Ma, Y.; Hong, J.; Yao, X.; Liu, C.; Zhang, L.; Fu, Y.; Sun, M.; Cheng, R.; Li, Z.; Ye, J. Org. Lett. 2021, 23, 9387.
[75]
(a) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D. Org. Lett. 2017, 19, 2905.
[75]
(b) Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.-T.; Zhang, K.; Mei, T.-S. Chem. Commun. 2017, 53, 12189.
[75]
(c) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77, 866. (in Chinese)
[75]
(杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866).
[75]
(d) Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Org. Lett. 2019, 21, 2645.
[75]
(e) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Organometallics 2019, 38, 1208.
[76]
Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487.
[77]
Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He, D.-L. Chem. Commun. 2019, 55, 7251.
[78]
Yang, Q.-L.; Xing, Y.-K.; Weng, X.-J.; Yang, X.; Guo, H.-M.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 18970.
[79]
Xing, Y.-K.; Chen, X.-R.; Yang, Q.-L.; Guo, H.-M.; Hong, X.; Mei, T.-S. Nat. Commun. 2021, 12, 930.
[80]
Jiao, K.-J.; Liu, D.; Ma, H.-X.; Qiu, H.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2020, 59, 6520.
[81]
Gadde, S. K.; Peshkov, A.; Brzozowska, A.; Nikolaienko, P.; Zhu, C.; Rueping, M. Angew. Chem. Int. Ed. 2020, 59, 6513.
[82]
Durandetti, M.; Périchon, J.; Nédélec, J.-Y. J. Org. Chem. 1997, 62, 7914.
[83]
DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751.
[84]
Qiu, H.; Shuai, B.; Wang, Y.-Z.; Liu, D.; Chen, Y.-G.; Gao, P.-S.; Ma, H.-X.; Chen, S.; Mei, T.-S. J. Am. Chem. Soc. 2020, 142, 9872.
[85]
Dhawa, U.; Tian, C,; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem. Int. Ed. 2020, 59, 13451.
[86]
Huang, Y.-Q.; Wu, Z.-J.; Zhu, L.; Gu, Q.; Lu, X.; You, S.-L.; Mei, T.-S. CCS Chem. 2021, 3, 3501.
[87]
Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem. Int. Ed. 2019, 58, 5033.
[88]
Wang, Y.; Deng, L.; Wang, X.; Wu, Z.; Wang, Y.; Pan, Y. ACS Catal. 2019, 9, 1630.
[89]
Liu, D.; Liu, Z.-R.; Ma, C.; Jiao, K.-J.; Sun, B.; Wei, L.; Lefranc, J.; Herbert, S.; Mei, T.-S. Angew. Chem. Int. Ed. 2021, 60, 9444.
[90]
Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. J. Am. Chem. Soc. 2021, 143, 3536.
[91]
(a) Milton, R. D.; Minteer, S. D. Acc. Chem. Res. 2019, 52, 3351.
[91]
(b) Chen, R.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y. S.; Beaver, K.; Weliwatte, S.; Gaffney, E. M.; Minteer, S. D. Chem. Rev. 2020, 120, 12903.
[92]
(a) Yuan, R.; Watanabe, S.; Kuwabata, S.; Yoneyama, H. J. Org. Chem. 1997, 62, 2494.
[92]
(b) Kawabata, S.; Iwata, N.; Yoneyama, H. Chem. Lett. 2000, 29, 110.
[92]
(c) Hollmann, F.; Hofstetter, K.; Habicher, T.; Hauer, B.; Schmid, A. J. Am. Chem. Soc. 2005, 127, 6540.
[92]
(d) Höllrigl, V.; Otto, K.; Schmid, A. Adv. Synth. Catal. 2007, 349, 1337.
[92]
(e) Dong, F.; Chen, H.; Malapit, C. A.; Prater, M. B.; Li, M.; Yuan, M.; Lim, K.; Minteer, S. D. J. Am. Chem. Soc. 2020, 142, 8374.
[92]
(f) Chen, H.; Cai, R.; Patel, J.; Dong, F.; Chen, H.; Minteer, S. D. J. Am. Chem. Soc. 2019, 141, 4963.
Outlines

/