Construction and Catalysis Advances of Inorganic Chiral Nanostructures
Received date: 2022-07-18
Online published: 2022-08-25
Supported by
National Natural Science Foundation of China(51902318); start-up project of Shanghai Jiaotong University.
Inorganic chiral structures with outstanding optical activity can extend optical signals to visible and near infrared regions due to their unique physical and chemical properties, which are of great significance for the detection and analysis of chirality, chiral synthesis, chiral sensing and related photoelectronic research. In the past two decades, the studies have been extensively carried out on inorganic chiral structures, and great progress has been made from synthesis methods, origins of chirality and practical applications. This review focuses on inorganic chiral nanomaterials with potential applications in chiral catalysis. Firstly, the unique chiral effect, common construction methods and chiral origin mechanism of single inorganic chiral nanoparticles are introduced, and the assembly methods of chiral hierarchical nanostructures using inorganic nanoparticles as the building blocks are briefly summarized. The applications of inorganic chiral materials in the field of chiral catalysis are emphasized. The related mechanisms of chiral metal nanostructures, chiral semiconductor nanostructures, chiral nanoceramics and chiral magnetic nanoparticles in chiral catalysis are discussed, and the latest representative progress is analyzed. At the end, the shortcomings and challenges of the existed inorganic chiral structures and catalytic performance are reviewed, and the future research direction is prospected.
Jinyue Ma , Lufei Huang , Baowen Zhou , Lin Yao . Construction and Catalysis Advances of Inorganic Chiral Nanostructures[J]. Acta Chimica Sinica, 2022 , 80(11) : 1507 -1523 . DOI: 10.6023/A22070308
[1] | Fan, J.-C.; Kotov, N. A. Adv. Mater. 2020, 32, e1906738. |
[2] | Pasteur, L. Comptes Rendus de l'Académie des Sciences (Paris), 1848, 26, 535. |
[3] | Hao, C.-L.; Xu, L.-G.; Sun, M.-Z.; Ma, W.; Kuang, H.; Xu, C.-L. Adv. Funct. Mater. 2018, 28, 1802372. |
[4] | Liang, Z.-P.; Tang, R.; Qiu, Y.-C.; Wang, Y.; Lu, H.-B.; Wu, Z.-G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese) |
[4] | (梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.) |
[5] | Jiang, S.; Song, Y.-X.; Kang, H.-M.; Li, B.; Yang, K.-L.; Xing, G.-X.; Yu, Y.; Li, S.-Y.; Zhao, P.-S.; Zhang, T.-Y. ACS Appl. Mater. Interfaces 2022, 14, 3385. |
[6] | Liu, L.-X.; Yang, Y.; Wei, Z.-X. Acta Chim. Sinica 2022, 80, 970. (in Chinese) |
[6] | (刘丽萱, 杨扬, 魏志祥, 化学学报, 2022, 80, 970.) |
[7] | Yan, J.; Feng, W.-C.; Kim, J.-Y.; Lu, J.; Kumar, P.; Mu, Z.-Z.; Wu, X.-C.; Mao, X.-M.; Kotov, N. A. Chem. Mater. 2019, 32, 476. |
[8] | Xia, Y.-S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z.-Y.; Glotzer, S. C.; Kotov, N. A. Nat. Nanotechnol. 2011, 6, 580. |
[9] | Ge, R.; Zhu, Y.-Y.; Wang, H.-F.; Gu, S.-X. Chin. J. Org. Chem. 2022, 42, 424. (in Chinese) |
[9] | (葛锐, 朱园园, 王海峰, 古双喜, 有机化学, 2022, 42, 424.) |
[10] | Wen, Y.; He, M.-Q.; Yu, Y.-L.; Wang, J.-H. Adv. Colloid Interface Sci. 2021, 289, 102376. |
[11] | Xia, Y.-S.; Zhou, Y.-L.; Tang, Z.-Y. Nanoscale 2011, 3, 1374. |
[12] | Mastroianni, A. J.; Claridge, S. A.; Alivisatos, A. P. J. Am. Chem. Soc. 2009, 131, 8455. |
[13] | Querejeta-Fernandez, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. J. Am. Chem. Soc. 2014, 136, 4788. |
[14] | Cheng, J.-J.; Le Saux, G.; Gao, J.; Buffeteau, T.; Battie, Y.; Barois, P.; Ponsinet, V.; Delville, M. H.; Ersen, O.; Pouget, E.; Oda, R. ACS Nano. 2017, 11, 3806. |
[15] | Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Science 2009, 325, 1513. |
[16] | Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. J. Phys. Chem. B 1998, 102, 10643. |
[17] | Si, S.; Gautier, C.; Boudon, J.; Taras, R.; Gladiali, S.; Bürgi, T. J. Phys. Chem. C 2009, 113, 12966. |
[18] | Zeng, C.-J.; Li, T.; Das, A.; Rosi, N. L.; Jin, R.-C. J. Am. Chem. Soc. 2013, 135, 10011. |
[19] | Garzón, I. L.; Reyes-Nava, J. A.; Rodríguez-Hernández, J. I.; Sigal, I.; Beltrán, M. R.; Michaelian, K. Phys. Rev. B 2002, 66, 073403. |
[20] | Gu, X.; Bulusu, S.; Li, X.; Zeng, X.-C.; Li, J.; Gong, X.-G.; Wang, L.-S. J. Phys. Chem. C 2007, 111, 8228. |
[21] | Lechtken, A.; Schooss, D.; Stairs, J. R.; Blom, M. N.; Furche, F.; Morgner, N.; Kostko, O.; von Issendorff, B.; Kappes, M. M. Angew. Chem., Int. Ed. 2007, 46, 2944. |
[22] | Moloney, M. P.; Gun'ko, Y. K.; Kelly, J. M. Chem. Commun. 2007, 3900. |
[23] | Govan, J. E.; Jan, E.; Querejeta, A.; Kotov, N. A.; Gun'ko, Y. K. Chem. Commun. 2010, 46, 6072. |
[24] | Choi, J. K.; Haynie, B. E.; Tohgha, U.; Pap, L.; Elliott, K. W.; Leonard, B. M.; Dzyuba, S. V.; Varga, K.; Kubelka, J.; Balaz, M. ACS Nano. 2016, 10, 3809. |
[25] | Oh, S. S.; Hess, O. Nano Convergence 2015, 2, 24. |
[26] | Xiao, L.; An, T.-T.; Wang, L.; Xu, X.-L.; Sun, H.-D. Nano Today 2020, 30, 100824. |
[27] | Lv, J.-W.; Gao, X.-Q.; Han, B.; Zhu, Y.-F.; Hou, K.; Tang, Z.-Y. Nat. Rev. Chem. 2022, 6, 125. |
[28] | Staszak, K.; Wieszczycka, K.; Marturano, V.; Tylkowski, B. Coord. Chem. Rev. 2019, 397, 76. |
[29] | Ranjbar, B.; Gill, P. Chem. Biol. Drug Des. 2009, 74, 101. |
[30] | Gonzalez-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solis, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martinez, A.; Taboada, J. M.; Obelleiro, F.; MacDowell, L. G.; Bals, S.; Liz-Marzan, L. M. Science 2020, 368, 1472. |
[31] | Lu, J.; Xue, Y.; Kotov, N. A. Isr. J. Chem. 2021, 61, 851. |
[32] | Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. |
[33] | Li, Y.-J.; Zhou, K.-X.; Wen, Z.-R.; Cao, S.; Shen, X.; Lei, M.; Gong, L. J. Am. Chem. Soc. 2018, 140, 15850. |
[34] | Peng, L.; Li, K.; Xie, C.-D.; Li, S.; Xu, D.; Qin, W.-L.; Yan, H.-L. Angew. Chem., Int. Ed. 2019, 58, 17199. |
[35] | Gross, E.; Liu, J. H.; Alayoglu, S.; Marcus, M. A.; Fakra, S. C.; Toste, F. D.; Somorjai, G. A. J. Am. Chem. Soc. 2013, 135, 3881. |
[36] | Li, S.; Liu, J.; Ramesar, N. S.; Heinz, H.; Xu, L.-G.; Xu, C.-L.; Kotov, N. A. Nat. Commun. 2019, 10, 4826. |
[37] | Zhou, Y.-L.; Marson, R. L.; van Anders, G.; Zhu, J.; Ma, G.-X.; Ercius, P.; Sun, K.; Yeom, B.; Glotzer, S. C.; Kotov, N. A. ACS Nano. 2016, 10, 3248. |
[38] | Xu, L.-G.; Wang, X.-X.; Wang, W.-W.; Sun, M.-Z.; Choi, W. J.; Kim, J. Y.; Hao, C.-L.; Li, S.; Qu, A.-H.; Lu, M.-R.; Wu, X.-L.; Colombari, F. M.; Gomes, W. R.; Blanco, A. L.; de Moura, A. F.; Guo, X.; Kuang, H.; Kotov, N. A.; Xu, C.-L. Nature 2022, 601, 366. |
[39] | Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G.-P.; Chang, W.-S.; Chang, S.-J.; Chuvilin, A.; Melnikau, D.; Rogach, A. L.; Zhang, P.-J.; Link, S.; Kral, P.; Kotov, N. A. Nat. Mater. 2015, 14, 66. |
[40] | Ma, W.; Xu, L.-G.; de Moura, A. F.; Wu, X.-L.; Kuang, H.; Xu, C.-L.; Kotov, N. A. Chem. Rev. 2017, 117, 8041. |
[41] | Humblot, V.; Haq, S.; Muryn, C.; Hofer, W. A.; Raval, R. J. Am. Chem. Soc. 2002, 124, 503. |
[42] | Gautier, C.; Burgi, T. J. Am. Chem. Soc. 2008, 130, 7077. |
[43] | Nakashima, T.; Kobayashi, Y.; Kawai, T. J. Am. Chem. Soc. 2009, 131, 10342. |
[44] | Gautier, C.; Burgi, T. J. Am. Chem. Soc. 2006, 128, 11079. |
[45] | Goldsmith, M. R.; George, C. B.; Zuber, G.; Naaman, R.; Waldeck, D. H.; Wipf, P.; Beratan, D. N. Phys. Chem. Chem. Phys. 2006, 8, 63. |
[46] | Hentschel, M.; Schaferling, M.; Duan, X.-Y.; Giessen, H.; Liu, N. Sci. Adv. 2017, 3, e1602735. |
[47] | Lieberman, I.; Shemer, G.; Fried, T.; Kosower, E. M.; Markovich, G. Angew. Chem., Int. Ed. 2008, 47, 4855. |
[48] | Chen, W.; Bian, A.; Agarwal, A.; Liu, L.-Q.; Shen, H.-B.; Wang, L.-B.; Xu, C.-L.; Kotov, N. A. Nano Lett. 2009, 9, 2153. |
[49] | Oh, H. S.; Liu, S.; Jee, H.; Baev, A.; Swihart, M. T.; Prasad, P. N. J. Am. Chem. Soc. 2010, 132, 17346. |
[50] | Lan, X.; Lu, X.-X.; Shen, C.-Q.; Ke, Y.-G.; Ni, W.-H.; Wang, Q.-B. J. Am. Chem. Soc. 2015, 137, 457. |
[51] | Li, Y.; Li, B.-Z.; Yan, Z.-J.; Xiao, Z.-L.; Huang, Z.-B.; Hu, K.; Wang, S.-B.; Yang, Y.-G. Chem. Mater. 2013, 25, 307. |
[52] | Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273. |
[53] | Wiley, B.; Sun, Y.-G.; Xia, Y.-N. Acc. Chem. Res. 2007, 40, 1067. |
[54] | Gautier, C.; Burgi, T. ChemPhysChem 2009, 10, 483. |
[55] | Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S. G.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. ACS Nano. 2013, 7, 11094. |
[56] | Kuznetsova, V.; Gromova, Y.; Martinez-Carmona, M.; Purcell-Milton, F.; Ushakova, E.; Cherevkov, S.; Maslov, V.; Gun'ko, Y. K. Nanophotonics 2021, 10, 797. |
[57] | Gao, X.-Q.; Han, B.; Yang, X.-K.; Tang, Z.-Y. J. Am. Chem. Soc. 2019, 141, 13700. |
[58] | Xu, Q.; Niu, Y.-C.; Li, J.-P.; Yang, Z.-J.; Gao, J.-J.; Ding, L.; Ni, H.-Q.; Zhu, P.-D.; Liu, Y.-P.; Tang, Y.-Y.; Lv, Z.-P.; Peng, B.; Hu, T. S.; Zhou, H.-J.; Xu, C.-M. Carbon Neutrality 2022, 1, 13. |
[59] | Tohgha, U.; Varga, K.; Balaz, M. Chem. Commun. 2013, 49, 1844. |
[60] | Deka, M. J.; Chowdhury, D. RSC Adv. 2017, 7, 53057. |
[61] | Burkett, S. L.; Mann, S. Chem. Commun. 1996, 321. |
[62] | Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem., nt. Ed. 2002, 41, 1705. |
[63] | Fu, X.-Y.; Wang, Y.; Huang, L.-X.; Sha, Y.-L.; Gui, L.-L.; Lai, L.-H.; Tang, Y.-Q. Adv. Mater. 2003, 15, 902. |
[64] | Mokashi-Punekar, S.; Zhou, Y.-C.; Brooks, S. C.; Rosi, N. L. Adv. Mater. 2020, 32, 1905975. |
[65] | Song, C.-Y.; Blaber, M. G.; Zhao, G.-P.; Zhang, P.-J.; Fry, H. C.; Schatz, G. C.; Rosi, N. L. Nano Lett. 2013, 13, 3256. |
[66] | Kuzyk, A.; Schreiber, R.; Fan, Z.-Y.; Pardatscher, G.; Roller, E. M.; Hogele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. Nature 2012, 483, 311. |
[67] | Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Kral, P.; Klajn, R. Science 2014, 345, 1149. |
[68] | Kim, Y.; Yeom, B.; Arteaga, O.; Yoo, S. J.; Lee, S. G.; Kim, J. G.; Kotov, N. A. Nat. Mater. 2016, 15, 461. |
[69] | Lv, J.-W.; Ding, D.-F.; Yang, X.-K.; Hou, K.; Miao, X.; Wang, D.-W.; Kou, B.-C.; Huang, L.; Tang, Z.-Y. Angew. Chem., nt. Ed. 2019, 58, 7783. |
[70] | Srivastava, S.; Santos, A.; Critchley, K.; Kim, K. S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C.-L.; Lilly, G. D.; Glotzer, S. C.; Kotov, N. A. Science 2010, 327, 1355. |
[71] | Jeong, K. J.; Lee, D. K.; Tran, V.; Wang, C.-F.; Lv, J.-W.; Park, J.; Tang, Z.-Y.; Lee, J. ACS Nano. 2020, 14, 7152. |
[72] | Liu, M.-H.; Zhang, L.; Wang, T.-Y. Chem. Rev. 2015, 115, 7304. |
[73] | Liu, J.-J.; Yang, L.; Qin, P.; Zhang, S.-Q.; Yung, K. K. L.; Huang, Z.-F. Adv. Mater. 2021, 33, 2005506. |
[74] | Eriksson, T.; Bjorkman, S.; Hoglund, P. Eur. J. Clin. Pharmacol. 2001, 57, 365. |
[75] | Mu, B.-S.; Zhang, Z.-H.; Wu, W.-B.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese) |
[75] | (穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.) |
[76] | Zheng, C.; You, S.-L. ACS Cent. Sci. 2021, 7, 432. |
[77] | Fang, L.; Lin, W.-B.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541. (in Chinese) |
[77] | (房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.) |
[78] | Ranganath, K. V. S.; Kloesges, J.; Schafer, A. H.; Glorius, F. Angew. Chem.,Int. Ed. 2010, 49, 7786. |
[79] | Ji, Y.-G.; Wu, L.; Fan, Q.-H. Acta Chim. Sinica 2014, 72, 798. (in Chinese) |
[79] | (季益刚, 吴磊, 范青华, 化学学报, 2014, 72, 798.) |
[80] | Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427. (in Chinese) |
[80] | (谢建华, 周其林, 化学学报, 2012, 70, 1427.) |
[81] | Orito, Y.; Imai, S.; Niwa, S.; Hung, N. G. J. Synth. Org. Chem. Jpn. 1979, 37, 173. |
[82] | Maeda, N.; Hungerbuhler, K.; Baiker, A. J. Am. Chem. Soc. 2011, 133, 19567. |
[83] | Tamura, M.; Fujihara, H. J. Am. Chem. Soc. 2003, 125, 15742. |
[84] | Liu, H.-L.; Li, Z.; Yan, Y.; Zhao, J.-Q.; Wang, Y. Nanoscale 2019, 11, 21990. |
[85] | Zhou, B.-W.; Ou, P.-F.; Pant, N.; Cheng, S.-B.; Vanka, S.; Chu, S.; Rashid, R. T.; Botton, G.; Song, J.; Mi, Z. T. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1330. |
[86] | Xu, L.-G.; Sun, M.-Z.; Cheng, P.; Gao, R.; Wang, H.; Ma, W.; Shi, X.-H.; Xu, C.-L.; Kuang, H. Adv. Funct. Mater. 2018, 28, 1707237. |
[87] | Chen, L.-X.; Xu, S.-F.; Li, J.-H. Chem. Soc. Rev. 2011, 40, 2922. |
[88] | Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Nat. Commun. 2016, 7, 12678. |
[89] | Assavapanumat, S.; Ketkaew, M.; Kuhn, A.; Wattanakit, C. J. Am. Chem. Soc. 2019, 141, 18870. |
[90] | Butcha, S.; Assavapanumat, S.; Ittisanronnachai, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Nat. Commun. 2021, 12, 1314. |
[91] | Zuo, X.-B.; Liu, H.-F.; Liu, M.-H. Tetrahedron Lett. 1998, 39, 1941. |
[92] | Kraynov, A.; Richards, R. Phys. Chem. Chem. Phys. 2007, 9, 884. |
[93] | Tamura, M.; Hayashigami, N.; Nakayama, A.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2022, 12, 868. |
[94] | Shah, E.; Soni, H. P. RSC Adv. 2013, 3, 17453. |
[95] | Zhang, H.; He, H.; Jiang, X.-M.; Xia, Z.-N.; Wei, W.-L. ACS Appl. Mater. Interfaces 2018, 10, 30680. |
[96] | Kohtani, S.; Kawashima, A.; Miyabe, H. Front. Chem. 2019, 7, 630. |
[97] | Jiang, C.-H.; Chen, W.; Zheng, W.-H.; Lu, H.-F. Org. Biomol. Chem. 2019, 17, 8673. |
[98] | Cherevatskaya, M.; Neumann, M.; Fuldner, S.; Harlander, C.; Kummel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; Konig, B. Angew. Chem., nt. Ed. 2012, 51, 4062. |
[99] | Jiang, Y.-S.; Wang, C.; Rogers, C. R.; Kodaimati, M. S.; Weiss, E. A. Nat. Chem. 2019, 11, 1034. |
[100] | Zhou, B.-W.; Ou, P.-F.; Rashid, R. T.; Vanka, S.; Sun, K.; Yao, L.; Sun, H.-D.; Song, J.; Mi, Z. T. iScience 2020, 23, 101613. |
[101] | Negrin-Montecelo, Y.; Movsesyan, A.; Gao, J.; Burger, S.; Wang, Z. M. M.; Nlate, S.; Pouget, E.; Oda, R.; Comesana-Hermo, M.; Govorov, A. O.; Correa-Duarte, M. A. J. Am. Chem. Soc. 2022, 144, 1663. |
[102] | Tan, L.-L.; Yu, S.-J.; Jin, Y.-R.; Li, J.-M.; Wang, P.-P. Angew. Chem., nt. Ed. 2022, 61, e202112400. |
[103] | Sun, M.-Z.; Xu, L.-G.; Qu, A.-H.; Zhao, P.; Hao, T.-T.; Ma, W.; Hao, C.-L.; Wen, X.-D.; Colombari, F. M.; de Moura, A. F.; Kotov, N. A.; Xu, C.-L.; Kuang, H. Nat. Chem. 2018, 10, 821. |
[104] | Hao, C.-L.; Gao, R.; Li, Y.; Xu, L.-G.; Sun, M.-Z.; Xu, C.-L.; Kuang, H. Angew. Chem., nt. Ed. 2019, 58, 7371. |
[105] | Denry, I.; Holloway, J. A. Materials 2010, 3, 351. |
[106] | Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Prog. Mater. Sci. 2021, 116, 100736. |
[107] | Ming, W.-Y.; Jiang, Z.-W.; Luo, G.-F.; Xu, Y.-J.; He, W.-B.; Xie, Z.-B.; Shen, D.-L.; Li, L.-W. Nanomaterials 2022, 12, 1491. |
[108] | Sharma, N.; Kumar, R.; Mitra, R.; Charalambous, H.; Chuang, A. C.; Biswas, K.; Jha, S. K. Ceram. Int. 2022, 48, 25168. |
[109] | Hazen, R. M.; Sverjensky, D. A. Cold Spring Harb. Perspect. Biol. 2010, 2, a002162. |
[110] | Cleary, O.; Purcell-Milton, F.; Vandekerckhove, A.; Gun'ko, Y. K. Adv. Opt. Mater. 2017, 5, 1601000. |
[111] | Li, Y.-W.; Cheng, J.-J.; Li, J.-G.; Zhu, X.; He, T.-C.; Chen, R.; Tang, Z.-K. Angew. Chem., nt. Ed. 2018, 57, 10236. |
[112] | van Popta, A. C.; Sit, J. C.; Brett, M. J. Appl. Opt. 2004, 43, 3632. |
[113] | Sato, I.; Kadowaki, K.; Urabe, H.; Jung, J. H.; Ono, Y.; Shinkai, S.; Soai, K. Tetrahedron Lett. 2003, 44, 721. |
[114] | Kawasaki, T.; Araki, Y.; Hatase, K.; Suzuki, K.; Matsumoto, A.; Yokoi, T.; Kubota, Y.; Tatsumi, T.; Soai, K. Chem. Commun. 2015, 51, 8742. |
[115] | Jiang, S.; Chekini, M.; Qu, Z.-B.; Wang, Y.-C.; Yeltik, A.; Liu, Y.-G.; Kotlyar, A.; Zhang, T.-Y.; Li, B.; Demir, H. V.; Kotov, N. A. J. Am. Chem. Soc. 2017, 139, 13701. |
[116] | Sun, Y.-H.; Zhao, C.-Q.; Gao, N.; Ren, J.-S.; Qu, X.-G. Chem.-Eur. J. 2017, 23, 18146. |
[117] | Evers, F.; Aharony, A.; Bar-Gill, N.; Entin-Wohlman, O.; Hedegard, P.; Hod, O.; Jelinek, P.; Kamieniarz, G.; Lemeshko, M.; Michaeli, K.; Mujica, V.; Naaman, R.; Paltiel, Y.; Refaely-Abramson, S.; Tal, O.; Thijssen, J.; Thoss, M.; van Ruitenbeek, J. M.; Venkataraman, L.; Waldeck, D. H.; Yan, B. H.; Kronik, L. Adv. Mater. 2022, 34, 2106629. |
[118] | Ghosh, K. B.; Zhang, W. Y.; Tassinari, F.; Mastai, Y.; Lidor-Shaley, O.; Naaman, R.; Mollers, P.; Nurenberg, D.; Zacharias, H.; Wei, J.; Wierzbinski, E.; Waldeck, D. H. J. Phys. Chem. C 2019, 123, 3024. |
[119] | Ren, Y.-H.; Wang, M.-Y.; Chen, X.-Y.; Yue, B.; He, H.-Y. Materials 2015, 8, 1545. |
[120] | Du, D.-Y.; Yan, L.-K.; Su, Z.-M.; Li, S.-L.; Lan, Y.-Q.; Wang, E.-B. Coord. Chem. Rev. 2013, 257, 702. |
[121] | Day, V. W.; Klemperer, W. G.; Schwartz, C. J. Am. Chem. Soc. 1987, 109, 6030. |
[122] | Inoue, M.; Yamase, T. Bull. Chem. Soc. Jpn. 1995, 68, 3055. |
[123] | Gao, N.; Du, Z.; Guan, Y.-J.; Dong, K.; Ren, J.-S.; Qu, X.-G. J. Am. Chem. Soc. 2019, 141, 6915. |
[124] | Ma, Y.-Y.; Shi, L.; Zhou, M.-C.; Li, B.; Chen, Z.-J.; Wu, L.-X. Chem. Commun. 2019, 55, 7001. |
[125] | Liu, Q.-Q.; Lin, H.-Y.; Wang, X.-L.; Wang, X.; Xu, N.; Tian, Y.; Yang, L.; Li, X.-R.; Sun, J.-Y. Cryst. Growth Des. 2021, 21, 7015. |
[126] | Luo, S.-Z.; Li, J.-Y.; Xu, H.; Zhang, L.; Cheng, J.-P. Org. Lett. 2007, 3675. |
[127] | Chang, W.; Qi, B.; Song, Y.-F. ACS Appl. Mater. Interfaces 2020, 12, 36389. |
[128] | Dusselier, M.; Davis, M. E. Chem. Rev. 2018, 118, 5265. |
[129] | He, L.; Yao, Q.-X.; Sun, M.; Ma, X.-X. Acta Chim. Sinica 2022, 80, 180. (in Chinese) |
[129] | (何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.) |
[130] | Davis, M. E. ACS Catal. 2018, 8, 10082. |
[131] | Lu, T.-T.; Yan, W.-F.; Xu, R.-R. Inorg. Chem. Front. 2019, 6, 1938. |
[132] | Tong, M.-Q.; Zhang, D.-L.; Fan, W.-B.; Xu, J.; Zhu, L.-K.; Guo, W.; Yan, W.-F.; Yu, J.-H.; Qiu, S.-L.; Wang, J.-G.; Deng, F.; Xu, R.-R. Sci. Rep. 2015, 5, 11521. |
[133] | Tomlinson, S. M.; Jackson, R. A.; Catlow, C. R. A. J. Chem. Soc., hem. Commun. 1990, 813. |
[134] | Sasaki, Y.; Yoshida, Y.; Fisher, C. A. J.; Ikeda, T.; Itabashi, K.; Okubo, T. Microporous Mesoporous Mater. 2016, 225, 210. |
[135] | Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756. |
[136] | Brand, S. K.; Schmidt, J. E.; Deem, M. W.; Daeyaert, F.; Ma, Y.-H.; Terasaki, O.; Orazov, M.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5101. |
[137] | Xia, Q.-H.; Shen, S.-C.; Song, J.; Kawi, S.; Hidajat, K. J. Catal. 2003, 219, 74. |
[138] | Chen, M.-N.; Mo, L.-P.; Cui, Z.-S.; Zhang, Z.-H. Curr. Opin. Green Sustainable Chem. 2019, 15, 27. |
[139] | Hu, A.-G.; Yee, G. T.; Lin, W.-B. J. Am. Chem. Soc. 2005, 127, 12486. |
[140] | Luo, S.-Z.; Zheng, X.-X.; Cheng, J.-P. Chem. Commun. 2008, 5719. |
[141] | Mori, K.; Kondo, Y.; Yamashita, H. Phys. Chem. Chem. Phys. 2009, 11, 8949. |
[142] | Safaei-Ghomi, J.; Zahedi, S. Appl. Organomet. Chem. 2015, 29, 566. |
[143] | Yeom, J.; Santos, U. S.; Chekini, M.; Cha, M.; de Moura, A. F.; Kotov, N. A. Science 2018, 359, 309. |
/
〈 |
|
〉 |