Exciplex Emission and Property Investigation Based on Cyano-substituted 9-Phenylfluorene Derivative
Received date: 2022-07-27
Online published: 2022-08-30
Supported by
China Postdoctoral Science Foundation(2022M711684); Natural Science Foundation of the Jiangsu Higher Education Institutions(22KJB430036); Open Project from Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials at Huaiyin Normal University(JSKC20022); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221084); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221085)
Exciplex-thermally activated delayed fluorescence (exciplex-TADF) devices have displayed great application potential in developing organic light-emitting diodes (OLEDs) with simple-process and high-performance, because the doped ratio of electron donor and acceptor in exciplex device is easily controlled as well as repeated, and small singlet-triplet energy splitting (ΔEST) can be easily achieved for harvesting TADF. However, the current reported electron acceptors are still rare, which mainly focus on traditional electron-attracting structures, such as nitrogen-heterocycles, triarylboron, triazine- arenes and diphenylphosphine oxides, etc. Therefore, it is highly desirable to construct new acceptor structures for improving exciplex device performance. In this work, we design and synthesize a novel cyano-substituted 9-phenylfluorene derivative (TCNDPFCz) as an electron acceptor to form exciplex emission through adopting 1,1-bis[(di-4-tolylamino)phenyl]-cyclohexane (TAPC) as an electron donor. Our experimental results show that the mixed system (TAPC:TCNDPFCz) exhibits bright exciplex emission at 535 nm and a favourable photoluminescence quantum yield (PLQY) of 54%. Subsequently, temperature-dependent transient fluorescence decay experiment is carried out, which indicates that the TAPC:TCNDPFCz film possesses TADF feature. It is suggested that the satisfactory PLQY value benefits from the exciplex-TADF of TAPC:TCNDPFCz. The low-temperature fluorescence and phosphorescence measurements are also performed and show that the TAPC:TCNDPFCz film displays smaller ΔEST value of 0.05 eV. It is obvious that such small ΔEST value promotes the reverse intersystem crossing from non-radiative triplet state to radiative singlet state of TAPC:TCNDPFCz, thus achieving TADF process. Additionally, electrochemical measurement shows that the TAPC:TCNDPFCz system displays large driving force of 0.41 eV in its exciplex-formation processes, which implies that the exciplex-emission (TAPC:TCNDPFCz) can be realized easily. More than that, it indicates that the acceptor TCNDPFCz possesses strong electron-accepting ability through tetracyano-substitution. An exciplex-OLED using TAPC:TCNDPFCz as the emitting layer is then fabricated, which exhibits a low turn-on voltage of 2.6 V with a maximum current efficiency of 27.2 cd•A‒1, power efficiency of 32.9 lm•W‒1 and external quantum efficiency of 12.5%. Therefore, the favourable photoluminescence and electroluminescence efficiencies of TAPC:TCNDPFCz are related to the strong electron-acceptability of TCNDPFCz and large driving force in the exciplex emission process. Our work suggests the 9-phenylfluorene can be used as a molecular skeleton to design new electron acceptors for exciplex-TADF.
Hongtao Cao , Pengfei Hou , Qing Cao , Yanang Li , Shasha Wang , Linghai Xie . Exciplex Emission and Property Investigation Based on Cyano-substituted 9-Phenylfluorene Derivative[J]. Acta Chimica Sinica, 2022 , 80(11) : 1476 -1484 . DOI: 10.6023/A22070335
[1] | Parker, C. A.; Hatchard, C. G. Trans. Faraday Soc. 1961, 57, 1894. |
[2] | Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
[3] | Huang, C.; Qiu, Z.; Gao, Y.; Chen, W.-C.; Ji, S.; Huo, Y. Chin. J. Org. Chem. 2021, 41, 3050. (in Chinese) |
[3] | (黄酬, 邱志鹏, 高杨, 陈文铖, 籍少敏, 霍延平, 有机化学, 2021, 41, 3050.) |
[4] | Wang, T.; Hua, X.; Yu, Y.; Yuan, Y.; Fung, M.; Jiang, Z. Chin. J. Org. Chem. 2019, 39, 1436. (in Chinese) |
[4] | (王彤彤, 华晓晨, 郁友军, 袁熠, 冯敏强, 蒋佐权, 有机化学, 2019, 39, 1436.) |
[5] | Yu, J.; Xiao, Y.; Chen, J. Chin. J. Org. Chem. 2019, 39, 3460. (in Chinese) |
[5] | (俞佳, 肖雅方, 陈嘉雄, 有机化学, 2019, 39, 3460.) |
[6] | Ye, Z.; Yang, J.; Ling, Z.; Zhao, Y.; Chen, G.; Zheng, Y.; Wei, B.; Shi, Y. Chin. J. Org. Chem. 2019, 39, 449. (in Chinese) |
[6] | (叶中华, 杨佳丽, 凌志天, 赵艺, 陈果, 郑燕琼, 魏斌, 施鹰, 有机化学, 2019, 39, 449.) |
[7] | Zheng, Q.; Wen, Y.; Qu, Y.; Zhu, Y.; Fung, M.; Jiang, Z. Chin. J. Org. Chem. 2022, 42, 572. (in Chinese) |
[7] | (郑琦, 文亚, 屈扬坤, 朱元皓, 冯敏强, 蒋佐权, 有机化学, 2022, 42, 572.) |
[8] | Liu, Q. Q.; Zhang, Y. H.; Gao, C.; Wang, T. Y.; Hu, W. P.; Dong, H. L. Acta Chim. Sinica 2020, 78, 945. (in Chinese) |
[8] | (刘情情, 张逸寒, 高灿, 王天禹, 胡文平, 董焕丽, 化学学报, 2020, 78, 945.) |
[9] | Bian, Y.; Liu, K.; Guo, Y.; Liu, Y. Acta Chim. Sinica 2020, 78, 848. (in Chinese) |
[9] | (边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.) |
[10] | Tang, X.; Cui, L.-S.; Li, H.-C.; Gillett, A. J.; Auras, F.; Qu, Y.-K.; Zhong, C.; Jones, S. T. E.; Jiang, Z.-Q.; Friend, R. H.; Liao, L.-S. Nat. Mater. 2020, 19, 1332. |
[11] | Yang, S.-Y.; Feng, Z.-Q.; Fu, Z.; Zhang, K.; Chen, S.; Yu, Y.-J.; Zou, B.; Wang, K.; Liao, L.-S.; Jiang, Z.-Q. Angew. Chem. Int. Ed. 2022, 61, e202206861. |
[12] | Huang, T.; Wang, Q.; Meng, G.; Duan, L.; Zhang, D. Angew. Chem. Int. Ed. 2022, 61, e202200059. |
[13] | Oda, S.; Kawakami, B.; Yamasaki, Y.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Nakatsuka, S.; Hatakeyama, T. J. Am. Chem. Soc. 2022, 144, 106. |
[14] | Feng, Q.; Zheng, X.; Wang, H.; Zhang, H.; Qian, Y.; Tan, K.; Cao, H.; Xie, L.; Huang, W. Mater. Adv. 2021, 2, 4000. |
[15] | Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020. |
[16] | Bian, J.; Chen, S.; Qiu, L.; Tian, R.; Man, Y.; Wang, Y.; Chen, S.; Zhang, J.; Duan, C.; Han, C.; Xu, H. Adv. Mater. 2022, 34, 2110547. |
[17] | Han, J.; Huang, Z.; Miao, J.; Qiu, Y.; Xie, Z.; Yang, C. Chem. Sci. 2022, 13, 3402. |
[18] | Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444. |
[19] | Zhang, M.; Zheng, C.-J.; Lin, H.; Tao, S.-L. Mater. Horiz. 2021, 8, 401. |
[20] | Sarma, M.; Wong, K.-T. ACS Appl. Mater. Interfaces 2018, 10, 19279. |
[21] | Zhang, M.; Zheng, C.-J.; Wang, K.; Shi, Y.-Z.; Wang, D.-Q.; Li, X.; Lin, H.; Tao, S.-L.; Zhang, X.-H. Adv. Funct. Mater. 2021, 31, 2010100. |
[22] | Tan, S.; Jinnai, K.; Kabe, R.; Adachi, C. Adv. Mater. 2021, 33, 2008844. |
[23] | Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photon. 2012, 6, 253. |
[24] | Hung, W.-Y.; Fang, G.-C.; Chang, Y.-C.; Kuo, T.-Y.; Chou, P.-T.; Lin, S.-W.; Wong, K.-T. ACS Appl. Mater. Interfaces 2013, 5, 6826. |
[25] | Liu, W.; Chen, J.-X.; Zheng, C.-J.; Wang, K.; Chen, D.-Y.; Li, F.; Dong, Y.-P.; Lee, C.-S.; Ou, X.-M.; Zhang, X.-H. Adv. Funct. Mater. 2016, 26, 2002. |
[26] | Al Amin, N. R.; Kesavan, K. K.; Biring, S.; Lee, C.-C.; Yeh, T.-H.; Ko, T.-Y.; Liu, S.-W.; Wong, K.-T. ACS Appl. Electron. Mater. 2020, 2, 1011. |
[27] | Wang, M.; Huang, Y.-H.; Lin, K.-S.; Yeh, T.-H.; Duan, J.; Ko, T.-Y.; Liu, S.-W.; Wong, K.-T.; Hu, B. Adv. Mater. 2019, 31, 1904114. |
[28] | Kim, K.-H.; Yoo, S.-J.; Kim, J.-J. Chem. Mater. 2016, 28, 1936. |
[29] | Zhao, J.; Zheng, C.; Zhou, Y.; Li, C.; Ye, J.; Du, X.; Li, W.; He, Z.; Zhang, M.; Lin, H.; Tao, S.; Zhang, X. Mater. Horiz. 2019, 6, 1425. |
[30] | Cao, H.-T.; Wan, J.; Li, B.; Zhang, H.; Xie, L.-H.; Sun, C.; Feng, Q.-Y.; Yu, W.-J.; Huang, W. Dyes Pigments 2021, 185, 108894. |
[31] | Liang, B.; Wang, J.; Cheng, Z.; Wei, J.; Wang, Y. J. Phys. Chem. Lett. 2019, 10, 2811. |
[32] | Chapran, M.; Pander, P.; Vasylieva, M.; Wiosna-Salyga, G.; Ulanski, J.; Dias, F. B.; Data, P. ACS Appl. Mater. Interfaces 2019, 11, 13460. |
[33] | Cao, H.-T.; Zhao, Y.; Sun, C.; Fang, D.; Xie, L.-H.; Yan, M.-N.; Wei, Y.; Zhang, H.-M.; Huang, W. Dyes Pigments 2018, 149, 422. |
[34] | Cao, H.-T.; Hong, C.-S.; Ye, D.-Q.; Liu, L.-H.; Xie, L.-H.; Chen, S.-F.; Sun, C.; Wang, S.-S.; Zhang, H.-M.; Huang, W. J. Mol. Struct. 2019, 1196, 132. |
[35] | Nguyen, T. B.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Adv. Mater. 2020, 32, 1906614. |
[36] | Oh, C. S.; Kang, Y. J.; Jeon, S. K.; Lee, J. Y. J. Phys. Chem. C 2015, 119, 22618. |
[37] | Xie, L.-H.; Hou, X.-Y.; Hua, Y.-R.; Tang, C.; Liu, F.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 3701. |
[38] | Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2015, 27, 2378. |
[39] | Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Marco, P. D. Appl. Phys. Lett. 2000, 76, 2352. |
[40] | Gould, I. R.; Young, R. H.; Mueller, L. J.; Farid, S. J. Am. Chem. Soc. 1994, 116, 8176. |
[41] | Stewart, D. J.; Dalton, M. J.; Swiger, R. N.; Cooper, T. M.; Haley, J. E.; Tan, L.-S. J. Phys. Chem. A 2013, 117, 3909. |
[42] | Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259. |
/
〈 |
|
〉 |