Article

Synthesis, Mesomorphism and Gelation Properties of Triazole-Modified Triphenylene 2,3-Dicarboxylic Esters and 2,3-Dicarboxyimides

  • Dong Yin ,
  • Hongyi Shang ,
  • Wenhao Yu ,
  • Shikai Xiang ,
  • Ping Hu ,
  • Keqing Zhao ,
  • Chun Feng ,
  • Biqin Wang
Expand
  • a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066
    b College of Polymer Science & Engineering, Sichuan University, Chengdu 610065

Received date: 2022-07-01

  Online published: 2022-09-07

Supported by

National Natural Science Foundation of China(21772135); National Natural Science Foundation of China(21871195); National Natural Science Foundation of China(51773140)

Abstract

The introduction of different functional groups at the periphery chains of discotic liquid crystals is a general strategy for the design and synthesis of new promising mesomorphic materials. Starting from triphenylene 2,3-dicarboxylic acid and anhydride, two kinds of triazole-modified triphenylene 2,3-dicarboxylic esters and 2,3-dicarboxyimides were synthesized via nucleophilic substitution and subsequent Cu-catalyzed azide-alkyne click reactions. Thermogravimetric analysis (TGA) measurements indicated that the prepared precursors and desired compounds exhibit good thermal stability with the temperatures of 5% weight loss in the range of 274~389 ℃. The thermal behavior and mesomorphism of these compounds were studied by differential scanning calorimetry (DSC), polarised optical microscopy (POM) and variable temperature X-ray diffraction (XRD) experiments. With the exceptions of esters 3a and 3b, which both show a single crystalline phase with a rather high melting temperature, the key precursors (2 and 5) and two triazole-modified imides (6a and 6b) all exhibit enantiotropic hexagonal columnar phase. Besides, the prepared triazole-bridged imide dimer 10 is a room temperature liquid crystalline material and has a wider mesophase range of 173 ℃ from 8 ℃ up to 181 ℃. XRD confirmed the existence of two columnar mesophases with different degrees of order in dimer 10, unambiguously characterized as Colh1 and Colh2. Due to the triazole moieties, additionally, all the triazole-modified esters and imides can form organogels in some organic solvents. Notably dimer 10 exhibits strong gelation ability in 1,2-dichloroethane or 1,4-dioxane with a very low critical gel concentration (1 mg/mL). In comparation, the precursor compounds 2 and 5, which do not possess any triazole ring in structure show no tendency to gelate, indicating that the strong dipole-dipole and π-π interactions between the triazole rings play an important role in the formation of the gel. Thus triazole-modified triphenylene 2,3-dicarboxyimides represent an interesting example of molecules exhibiting both liquid crystalline and gelling properties. This investigation sheds light on the potential applicability of the triazole-modified triphenylene 2,3-dicarboxyimides as promising multifunctional materials.

Cite this article

Dong Yin , Hongyi Shang , Wenhao Yu , Shikai Xiang , Ping Hu , Keqing Zhao , Chun Feng , Biqin Wang . Synthesis, Mesomorphism and Gelation Properties of Triazole-Modified Triphenylene 2,3-Dicarboxylic Esters and 2,3-Dicarboxyimides[J]. Acta Chimica Sinica, 2022 , 80(10) : 1376 -1384 . DOI: 10.6023/A22070288

References

[1]
(a) Wohrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Litterscheidt, J.; Haenle, J. C.; Staffeld, P.; Baro, A.; Giesselmann, F.; Laschat, S. Chem. Rev. 2016, 116, 1139.
[1]
(b) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832.
[1]
(c) Kumar, S. Liq. Cryst. 2020, 47, 1195.
[1]
(d) Pal, S. K.; Setia, S.; Avinash, B. S.; Kumar, S. Liq. Cryst. 2013, 40, 1769.
[1]
(e) Kumar, M.; Varshney, S.; Kumar, S. Polym. J. 2021, 53, 283.
[1]
(f) Kumar, S. Liq. Cryst. 2004, 31, 1037.
[1]
(g) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
[1]
(h) Zhu, X. M.; Bai, X. Y.; Wang, H. F.; Hu, P.; Wang, B. Q.; Zhao, K. Q. Acta Chim. Sinica 2021, 79, 1486. (in Chinese)
[1]
(朱雪敏, 白小燕, 王海峰, 胡平, 汪必琴, 赵可清, 化学学报, 2021, 79, 1486.)
[1]
(i) Chen, S. S.; Li, T.; Zhao, D. H. Acta Phys. Chim. Sin. 2010, 26, 1124. (in Chinese)
[1]
(陈树森, 李田, 赵达慧, 物理化学学报, 2010, 26, 1124.)
[2]
(a) Zhao, K. Q.; Wang, B. Q.; Hu, P.; Gao, C. Y.; Yuan, F. J.; Li, H. R. Chin. J. Chem. 2006, 24, 210.
[2]
(b) Zhao, K. Q.; Hu, P.; Wang, B. Q.; Yu, W. H.; Chen, H. M.; Wang, X. L.; Shimizu, Y. Chin. J. Chem. 2007, 25, 375.
[3]
Allen, M. T.; Diele, S.; Harris, K. D. M.; Hegmann, T.; Kariuki, B. M.; Lose, D.; Preece, J. A.; Tschierske, C. J. Mater. Chem. 2001, 11, 302.
[4]
Cammidge, A. N.; Chausson, C.; Gopee, H.; Li, J.; Hughes, D. L. Chem. Commun. 2009, 7375.
[5]
(a) Lavigueur, C.; Foster, E. J.; Williams, V. E. J. Am. Chem. Soc. 2008, 130, 11791.
[5]
(b) Voisin, E.; Johan Foster, E.; Rakotomalala, M.; Williams, V. E. Chem. Mater. 2009, 21, 3251.
[6]
Osawa, T.; Kajitani, T.; Hashizume, D.; Ohsumi, H.; Sasaki, S.; Takata, M.; Koizumi, Y.; Saeki, A.; Seki, S.; Fukushima, T. Angew. Chem., Int. Ed. 2012, 51, 7990.
[7]
Gao, X.; Hu, Y. J. Mater. Chem. C 2014, 2, 3099.
[8]
Gudeika, D. Synth. Met. 2020, 262, 116328.
[9]
(a) Wurthner, F.; Saha-Moller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2016, 116, 962.
[9]
(b) Hu, Y. H.; Wu, W. L.; Yu, L. Y.; Luo, K. J.; Xu, X. P.; Li, Y.; Peng, Q. Acta Chim. Sinica 2020, 78, 1246. (in Chinese)
[9]
(胡瑜辉, 武文林, 于立扬, 骆开均, 徐小鹏, 李瑛, 彭强, 化学学报, 2020, 78, 1246.)
[10]
Pu, J.; Yang, T.; Wang, Y.; Zhu, Q.; Yang, M.; Liu, C.; Wang, W. Liq. Cryst. 2020, 47, 291.
[11]
(a) Psutka, K. M.; Bozek, K. J. A.; Maly, K. E. Org. Lett. 2014, 16, 5442.
[11]
(b) Psutka, K. M.; LeDrew, J.; Taing, H.; Eichhorn, S. H.; Maly, K. E. J. Org. Chem. 2019, 84, 10796.
[12]
Yin, J.; Qu, H. M.; Zhang, K.; Luo, J.; Zhang, X. J.; Chi, C. Y.; Wu, J. S. Org. Lett. 2009, 11, 3028.
[13]
(a) Foster, E. J.; Jones, R. B.; Lavigueur, C.; Williams, V. E. J. Am. Chem. Soc. 2006, 128, 8569.
[13]
(b) Boden, N.; Bushby, R. J.; Lu, Z. B.; Cammidge, A. N. Liq. Cryst. 1999, 26, 495.
[14]
Feng, C.; Tian, X. L.; Zhou, J.; Xiang, S. K.; Yu, W. H.; Wang, B. Q.; Hu, P.; Redshaw, C.; Zhao, K. Q. Org. Biomol. Chem. 2014, 12, 6977.
[15]
(a) Han, X. D.; Tian, X. L.; Yu, W. H.; Xiang, S. K.; Hu, P.; Wang, B. Q.; Zhao, K. Q.; Chen, X. Z.; Feng, C. Liq. Cryst. 2017, 44, 1727.
[15]
(b) Feng, C.; Ding, Y. H.; Han, X. D.; Yu, W. H.; Xiang, S. K.; Wang, B. Q.; Hu, P.; Li, L. C.; Chen, X. Z.; Zhao, K. Q. Dyes Pigm. 2017, 139, 87.
[15]
(c) Fan, S. Y.; Xu, H. T.; Li, Q. G.; Fang, D. M.; Yu, W. H.; Xiang, S. K.; Hu, P.; Zhao, K. Q.; Feng, C.; Wang, B. Q. Liq. Cryst. 2019, 47, 1041.
[15]
(d) Du, Y.; Zhao, C. L.; Fan, S. Y.; Yu, W. H.; Xiang, S. K.; Zhao, K. Q.; Feng, C.; Wang, B. Q. Liq. Cryst. 2022, 49, 719.
[15]
(e) Xia, X.; Zhao, C. L.; Xu, H. T.; Yu, W. H.; Xiang, S. K.; Li, L. C.; Zhao, K. Q.; Feng, C.; Wang, B. Q. Dyes Pigm. 2022, 199, 110114.
[16]
Berg, R.; Straub, B. F. Beilstein J. Org. Chem. 2013, 9, 2715.
[17]
(a) Rodrigues, L. D.; Sunil, D.; Chaithra, D.; Bhagavath, P. J. Mol. Liq. 2020, 297, 111909.
[17]
(b) Liu, Q. S.; Lü, Y. F.; Bao, P. L.; Yue, H. L.; Wei, W. Chin. J. Org. Chem. 2020, 40, 4015. (in Chinese)
[17]
(刘启顺, 吕玉芬, 鲍鹏丽, 岳会兰, 魏伟, 有机化学, 2020, 40, 4015.)
[17]
(c) Zhang, H. L.; Cheng, J. J.; Zou, G. J. Funct. Polym. 2019, 32, 728. (in Chinese)
[17]
(张红莉, 程军杰, 邹纲, 功能高分子学报, 2019, 32, 728.)
[17]
(d) Cheng, H. F. Ph.D. Dissertation, Yunnan University, Kunming, 2018. (in Chinese)
[17]
((程慧芳, 博士论文, 云南大学, 昆明, 2018.)
[18]
Gallardo, H.; Westphal, E. Curr. Org. Synth. 2015, 12, 806.
[19]
(a) Cheng, H. M.; Ma, C.; Chen, Y.; Ni, H. L.; Feng, C.; Wang, B. Q.; Zhao, K. Q.; Yu, W. H.; Hu, P. Liq. Cryst. 2017, 44, 1450.
[19]
(b) Xia, M. H.; Chen, Y.; Chen, Z. R.; Yu, W. H.; Cheng, H. M.; Feng, C.; Ni, H. L.; Wang, B. Q.; Zhao, K. Q.; Hu, P. Liq. Cryst. 2022, 49, 72.
[19]
(c) Xiong, D.; Xiong, X. P.; Chen, Z. R.; Yu, W. H.; Feng, C.; Chen, H. M.; Ni, H. L.; Wang, B. Q.; Zhao, K. Q.; Hu, P. Liq. Cryst. 2022, 49, 1261.
[20]
Benbayer, C.; Kheddam, N.; Saïdi-Besbes, S.; de Givenchy, E. T.; Guittard, F.; Grelet, E.; Safer, A. M.; Derdour, A. J. Mol. Struct. 2013, 1034, 22.
[21]
Park, S.; Cho, B. K. Soft Matter 2015, 11, 94.
[22]
Bhalla, V.; Singh, H.; Kumar, M.; Prasad, S. K. Langmuir 2011, 27, 15275.
[23]
(a) Yu, W. H.; Nie, S. C.; Bai, Y. F.; Jing, Y.; Wang, B. Q.; Hu, P.; Zhao, K. Q. Sci. China: Chem. 2010, 53, 1134.
[23]
(b) Neier, R.; Thevenet, D. Synthesis 2011, 2011, 3801.
[24]
Zhao, K. Q.; Bai, Y. F.; Hu, P.; Wang, B. Q.; Shimizu, Y. Mol. Cryst. Liq. Cryst. 2009, 509, 819.
[25]
Godbert, N.; Crispini, A.; Ghedini, M.; Carini, M.; Chiaravalloti, F.; Ferrise, A. J. Appl. Cryst. 2014, 47, 668.
[26]
Yang, Y.; Wang, H.; Wang, H. F.; Liu, C. X.; Zhao, K. Q.; Wang, B. Q.; Hu, P.; Monobe, H.; Heinrich, B.; Donnio, B. Cryst. Growth Des. 2018, 18, 4296.
Outlines

/