Review

Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection

  • Ruilin Haotian ,
  • Ziyu Zhu ,
  • Yanhui Cai ,
  • Wei Wang ,
  • Zhen Wang ,
  • Axin Liang ,
  • Aiqin Luo
Expand
  • Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China

Received date: 2022-07-31

  Online published: 2022-09-09

Supported by

National Key Research and Development Program of China(2019YFA0904104)

Abstract

Covalent organic frameworks (COFs) are two-dimensional or three-dimensional organic crystalline materials with nanoscale structural order, which have structural advantages such as high periodicity and modifiability. Electrochemical biosensors based on COFs have the characteristics of ultra-sensitivity, strong specificity, and good repeatability, and have broad prospects in the detection of biological samples. The synthesis methods and strategies of COFs, the introduction and classification of electrochemical biosensors, and the application of COFs in electrochemical biosensing to detect biological samples are briefly summarized. Finally, the technical bottlenecks of COFs materials in the field of biosensing and their future development directions are summarized and discussed.

Cite this article

Ruilin Haotian , Ziyu Zhu , Yanhui Cai , Wei Wang , Zhen Wang , Axin Liang , Aiqin Luo . Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection[J]. Acta Chimica Sinica, 2022 , 80(11) : 1524 -1535 . DOI: 10.6023/A22070339

References

[1]
Liu, R.-X.; Zhu, Q.-H. Chinese Journal of Modern Applied Pharmacy 2020, 37, 378. (in Chinese)
[1]
(刘睿轩, 朱全红, 中国现代应用药学, 2020, 37, 378.)
[2]
Strimbu, K.; Tavel, J. A. Curr. Opin. HIV AIDS. 2010, 5, 463.
[3]
Kaya, S. I.; Ozcelikay, G.; Mollarasouli, F.; Bakirhan, N. K.; Ozkan, S. A. Sens. Actuators B Chem. 2022, 351, 130856.
[4]
Agrahari, S.; Kumar Gautam, R.; Kumar Singh, A.; Tiwari, I. Microchem. J. 2022, 172, 106980.
[5]
Ensafi, A. Electrochemical Biosensors, Ed.: Eryilmaz, K., Elsevier, Amsterdam, 2019, pp. 1-10.
[6]
Dai, Y.; Abbasi, K.; DePietro, M.; Butler, S.; Liu, C. Sci. Rep. 2018, 8, 13541.
[7]
Ma, Y.; Wang, S.; Zhang, Z.; Cao, X.; Zhang, B.; Wu, D.; Chen, K.; Wang, W.; Liu, P. ACS Appl. Mater. Interfaces 2022, 14, 22982.
[8]
Chen, Y.-X.; Chen, Q.; Zhang, Z.-H. Chin. J. Org. Chem. 2021, 41, 3826. (in Chinese)
[8]
(陈育萱, 陈奇, 张占辉, 有机化学, 2021, 41, 3826.)
[9]
Mohammadpour, Z.; Majidzadeh-A, K. ACS Biomater. Sci. Eng. 2020, 6, 1852.
[10]
Wang, T.; Zhao, L.; Wang, K.-W.; Bai, Y.-F.; Feng, F. Acta Chim. Sinica 2021, 79, 600. (in Chinese)
[10]
(王涛, 赵璐, 王科伟, 白云峰, 冯锋, 化学学报, 2021, 79, 600.)
[11]
Zhao, G.; Xu, L.; Jiang, J.; Mei, Z.; An, Q.; Lv, P.; Yang, X.; Guo, H.; Sun, X. Nano Energy 2022, 92, 106756.
[12]
Zhang, Z.; Yin, C.; Shi, X.; Yang, G.; Wang, Y. Sep. Purif. Technol. 2022, 283, 120233.
[13]
Jahromi, A. M.; Solhjoo, A.; Ghasemi, M.; Khedri, M.; Maleki, R.; Tayebi, L. Mater. Chem. Phys. 2022, 276, 125382.
[14]
Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y. Surf. Interfaces 2021, 25, 101249.
[15]
Feng, L.; Qian, C.; Zhao, Y. ACS Mater. Lett. 2020, 2, 1074.
[16]
Yang, Z.; Ma, C.; Gu, J.; Wu, Y.; Zhu, C.; Li, L.; Gao, H.; Yin, W.; Wang, Z.; Zhang, Y.; Shang, Y.; Wang, C.; Chen, G. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120534.
[17]
Liu, X.; Song, N.; Qian, D.; Gu, S.; Pu, J.; Huang, L.; Liu, J.; Qian, K. ACS Biomater. Sci. Eng. 2021, 10.1021/acsbiomaterials.1c00733.
[18]
Wang, Z.-T.; Liu, Y.-Z.; Wang, Y.-J.; Fang, Q.-R. Acta Chim. Sinica 2022, 80, 37. (in Chinese)
[18]
(王自陶, 刘耀祖, 王钰杰, 方千荣, 化学学报, 2022, 80, 37.)
[19]
Jiang, C.-H.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
[19]
(蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[20]
Chen, X.; Geng, K.; Liu, R.; Tan, K.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Angew. Chem. Int. Ed. 2020, 59, 5050.
[21]
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120, 8814.
[22]
Altaf, A.; Baig, N.; Sohail, M.; Sher, M.; Ul-Hamid, A.; Altaf, M.; Mater. Today Commun. 2021, 28, 102612.
[23]
Bhambri, H.; Khullar, S.; Sakshi.; Mandal, S. K. Mater. Adv. 2022, 3, 19.
[24]
Niu, L.; Zhao, X.; Wu, F.; Tang, Z.; Lv, H.; Wang, J.; Fang, M.; Giesy, J. P. Sci. Total Environ. 2021, 783, 146838.
[25]
Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; Huang, D.; Zhu, Y.; Wang, Z.; Tang, J. Chem. Soc. Rev. 2020, 49, 4135.
[26]
Ashworth, C. Nat. Rev. Chem. 2021, 5, 220.
[27]
Jin, P.; Niu, X.; Zhang, F.; Dong, K.; Dai, H.; Zhang, H.; Wang, W.; Chen, H.; Chen, X. ACS Appl. Mater. Interfaces 2020, 12, 20414.
[28]
Liu, H.; Chu, J.; Yin, Z.; Cai, X.; Zhuang, L.; Deng, H. Chem 2018, 4, 1696.
[29]
Grunenberg, L.; Savasci, G.; Terban, M.; Duppel, V.; Moudrakovski, I.; Etter, M.; Dinnebier, R. E.; Ochsenfeld, C.; Lotsch, B. J. Am. Chem. Soc. 2021, 143, 3430.
[30]
Li, G.; Ma, W.; Yang, Y.; Zhong, C.; Huang, H.; Ouyang, D.; He, Y.; Tian, W.; Lin, J.; Lin, Z. ACS Appl. Mater. Interfaces 2021, 13, 49482.
[31]
Song, K. S.; Talapaneni, S. N.; Ashirov, T.; Coskun, A. ACS Appl. Mater. Interfaces 2021, 13, 26102.
[32]
Guan, X.; Ma, Y.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2018, 140, 4494.
[33]
Karak, S.; Kandambeth, S.; Biswal, B. P.; Sasmal, H. S.; Kumar, S.; Pachfule, P.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 1856.
[34]
C?té, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[35]
Evans, A. M.; Strauss, M. J.; Corcos, A. R.; Hirani, Z.; Ji, W.; Hamachi, L. S.; Aguilar-Enriquez, X.; Chavez, A. D.; Smith, B. J.; Dichtel, W. R. Chem. Rev. 2022, 122, 442.
[36]
Jiang, Y.; Liu, C.; Huang, A. ACS Appl. Mater. Interfaces 2019, 11, 32186.
[37]
Wang, N.; Liu, J.; Tang, L.; Wei, X.; Wang, C.; Li, X.; Ma, L. ACS Appl. Mater. Interfaces 2021, 13, 24966.
[38]
Huo, Y.; Xiu, S.; Meng, L.-Y.; Quan, B. Chem. Eng. J. 2023, 451, 138572.
[39]
Zhang, J.-L.; Yang, Y.; Liang, W.-B.; Yao, L.-Y.; Yuan, R.; Xiao, D.-R. Anal. Chem. 2021, 93, 3258.
[40]
Han, X.-H.; Chu, J.-Q.; Wang, W.-Z.; Qi, Q.-Y.; Zhao, X. Chin. Chem. Lett. 2022, 33, 2464.
[41]
Li, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Chem. Soc. Rev. 2020, 49, 2852.
[42]
Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.
[43]
Rangaraj, V. M.; Reddy, K. S. K.; Karanikolos, G. N. Chem. Eng. J. 2022, 429, 132160.
[44]
Dong, B.; Wang, W.-J.; Pan, W.; Kang, G.-J. Mater. Chem. Phys. 2019, 226, 244.
[45]
Wang, J.; Yan, B. Anal. Chem. 2019, 91, 13183.
[46]
Wang, J.-M.; Lian, X.; Yan, B. Inorg. Chem. 2019, 58, 9956.
[47]
Jiang, H.; Shen, X.; Wang, F.; Zhang, J.; Du, Y.; Chen, R. Ind. Eng. Chem. Res. 2021, 60, 13523.
[48]
Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.
[49]
Yang, S.-T.; Kim, J.; Cho, H.-Y.; Kim, S.; Ahn, W.-S. RSC Adv. 2012, 2, 10179.
[50]
Preet, K.; Gupta, G.; Kotal, M.; Kansal, S. K.; Salunke, D. B.; Sharma, H. K.; Chandra Sahoo, S.; Van Der Voort, P.; Roy, S. Cryst. Growth Des. 2019, 19, 2525.
[51]
Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J. P. J. Hazard. Mater. 2019, 369, 494.
[52]
Qi, K.; Zhuang, C.; Zhang, M.; Gholami, P.; Khataee, A. J. Mater. Sci. Technol. 2022, 123, 243.
[53]
Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21, 204.
[54]
Kim, S.; Park, C.; Lee, M.; Song, I.; Kim, J.; Lee, M.; Jung, J.; Kim, Y.; Lim, H.; Choi, H. C. Adv. Funct. Mater. 2017, 27, 1700925.
[55]
Ji, W.; Guo, Y.-S.; Xie, H.-M.; Wang, X.; Jiang, X.; Guo, D.-S. J. Hazard. Mater. 2020, 397, 122793.
[56]
Zhang, Y.; Ma, L.; Lv, Y.; Tan, T. Chem. Eng. J. 2022, 430, 133001.
[57]
Das, G.; Skorjanc, T.; Sharma, S. K.; Gándara, F.; Lusi, M.; Shankar Rao, D. S.; Vimala, S.; Krishna Prasad, S.; Raya, J.; Han, D. S.; Jagannathan, R.; Olsen, J.-C.; Trabolsi, A. J. Am. Chem. Soc. 2017, 139, 9558.
[58]
Kim, S.; Choi, H. C. Commun. Chem. 2019, 2, 60.
[59]
Liang, R.; Hu, Y.; Li, G. J. Chromatogr. A 2020, 1618, 460867.
[60]
Yang, S.; Li, X.; Qin, Y.; Cheng, Y.; Fan, W.; Lang, X.; Zheng, L.; Cao, Q. ACS Appl. Mater. Interfaces 2021, 13, 29471.
[61]
Sun, Y.; Song, S.; Xiao, D.; Gan, L.; Wang, Y. ACS Omega 2020, 5, 24262.
[62]
Zhang, F.; Zhang, J.; Zhang, B.; Tan, X.; Shao, D.; Shi, J.; Tan, D.; Liu, L.; Feng, J.; Han, B.; Yang, G.; Zheng, L.; Zhang, J. ChemSusChem 2018, 11, 3576.
[63]
Hu, J.; Zanca, F.; Lambe, P.; Tsuji, M.; Wijeweera, S.; Todisco, S.; Mastrorilli, P.; Shirley, W.; Benamara, M.; Moghadam, P. Z.; Beyzavi, H. ACS Appl. Mater. Interfaces 2020, 12, 29212.
[64]
Hu, C.; Zhang, Z.; Liu, S.; Liu, X.; Pang, M. ACS Appl. Mater. Interfaces 2019, 11, 23072.
[65]
Zhang, M.; Liu, J.; Yang, B.; Ma, L.; Wang, N.; Wei, X. Ind. Eng. Chem. Res. 2022, 61, 1066.
[66]
Zhu, D.; Zhang, Z.; Alemany, L. B.; Li, Y.; Nnorom, N.; Barnes, M.; Khalil, S.; Rahman, M. M.; Ajayan, P. M.; Verduzco, R. Chem. Mater. 2021, 33, 3394.
[67]
Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, H. S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 13083.
[68]
Kumar Mahato, A.; Bag, S.; Sasmal, H. S.; Dey, K.; Giri, I.; Linares-Moreau, M.; Carbonell, C.; Falcaro, P.; Gowd, E. B.; Vijayaraghavan, R. K.; Banerjee, R. J. Am. Chem. Soc. 2021, 143, 20916.
[69]
Khan, N. A.; Zhang, R.; Wu, H.; Shen, J.; Yuan, J.; Fan, C.; Cao, L.; Olson, M. A.; Jiang, Z. J. Am. Chem. Soc. 2020, 142, 13450.
[70]
Ou, Z.; Liang, B.; Liang, Z.; Tan, F.; Dong, X.; Gong, L.; Zhao, P.; Wang, H.; Zou, Y.; Xia, Y.; Chen, X.; Liu, W.; Qi, H.; Kaiser, U.; Zheng, Z. J. Am. Chem. Soc. 2022, 144, 3233.
[71]
Hao, Q.; Zhao, C.; Sun, B.; Lu, C.; Liu, J.; Liu, M.; Wan, L.-J.; Wang, D. J. Am. Chem. Soc. 2018, 140, 12152.
[72]
Negahdary, M. Biosens. Bioelectron. 2020, 152, 112018.
[73]
Nur, Y.; Gaffar, S.; Hartati, Y. W.; Subroto, T. Sens. Biosensing Res. 2021, 32, 100416.
[74]
Hasan, M. R.; Ahommed, M. S.; Daizy, M.; Bacchu, M. S.; Ali, M. R.; Al-Mamun, M. R.; Saad Aly, M. A.; Khan, M. Z. H.; Hossain, S. I. Biosens. Bioelectron.: X. 2021, 8, 100075.
[75]
Lu, D.; Zhu, D. Z.; Gan, H.; Yao, Z.; Fu, Q.; Zhang, X. Sci. Total Environ. 2021, 777, 146239.
[76]
Filik, H.; Avan, A. A. Talanta 2019, 205, 120153.
[77]
Hashem, A.; Hossain, M. A. M.; Marlinda, A. R.; Mamun, M. A.; Simarani, K.; Johan, M. R. Appl. Surf. Sci. 2021, 4, 100064.
[78]
Nemiwal, M.; Zhang, T. C.; Kumar, D. Enzyme Microb. Technol. 2022, 156, 110006.
[79]
Yue, F.; Li, F.; Kong, Q.; Guo, Y.; Sun, X. Sci. Total Environ. 2021, 762, 143129.
[80]
Liang, H.; Wang, L.; Yang, Y.; Song, Y.; Wang, L. Biosens. Bioelectron. 2021, 193, 113553.
[81]
Feng, Y.; Xu, Y.; Liu, S.; Wu, D.; Su, Z.; Chen, G.; Liu, J.; Li, G. Coord. Chem. Rev. 2022, 459, 214414.
[82]
Cui, L.; Zhao, M.-H.; Zhang, C.-Y. Chin. J. Anal. Chem. 2020, 48, 817. (in Chinese)
[82]
(崔琳, 赵敏惠, 张春阳, 分析化学, 2020, 48, 817.)
[83]
O’Donnell, A. D.; Salimi, S.; Hart, L. R.; Babra, T. S.; Greenland, B. W.; Hayes, W. React. Funct. Polym. 2022, 172, 105209.
[84]
Malathi, S.; Pakrudheen, I.; Kalkura, S. N.; Webster, T. J.; Balasubramanian, S. SI. 2022, 3, 100169.
[85]
Sun, Y.; Waterhouse, G. I. N.; Xu, L.; Qiao, X.; Xu, Z. Sens. Actuators B Chem. 2020, 321, 128501.
[86]
Chen, Y.; Xie, Y.; Sun, X.; Wang, Y.; Wang, Y. Sens. Actuators B Chem. 2021, 331, 129438.
[87]
Su, Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H.; Wang, P.; Han, H.; Li, G.; Wu, Y. Anal. Chem. 2019, 91, 11687.
[88]
Cui, W.-R.; Li, Y.-J.; Jiang, Q.-Q.; Wu, Q.; Luo, Q.-X.; Zhang, L.; Liang, R.-P.; Qiu, J.-D. Anal. Chem. 2021, 93, 16149.
[89]
Chen, J.-Q.; Zheng, Q.-Q.; Xiao, S.-J.; Zhang, L.; Liang, R.-P.; Ouyang, G.; Qiu, J.-D. Anal. Chem. 2022, 94, 2517.
[90]
Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. ACS Appl. Mater. Interfaces 2017, 9, 23843.
[91]
Wang, M.; Pan, Y.; Wu, S.; Sun, Z.; Wang, L.; Yang, J.; Yin, Y.; Li, G. Biosens. Bioelectron. 2020, 169, 112638.
[92]
Wang, M.; Lin, Y.; Wu, S.; Deng, Y.; Zhang, Y.; Yang, J.; Li, G. Sens. Actuators B Chem. 2022, 362, 131813.
[93]
Liu, F.; Peng, J.; Lei, Y.-M.; Liu, R.-S.; Jin, L.; Liang, H.; Liu, H.-F.; Ma, S.-Y.; Zhang, X.-H.; Zhang, Y.-P.; Li, C.-P.; Zhao, H. Sens. Actuators B Chem. 2022, 362, 131807.
[94]
Liang, H.; Ning, G.; Wang, L.; Li, C.; Zheng, J.; Zeng, J.; Zhao, H.; Li, C.-P. ACS Appl. Nano Mater. 2021, 4, 4593.
[95]
Liu, X.; Wang, F.; Meng, Y.; Zhao, L.; Shi, W.; Wang, X.; He, Z.; Chao, J.; Li, C. Biosens. Bioelectron. 2022, 207, 114208.
[96]
Liang, H.; Xu, H.; Zhao, Y.; Zheng, J.; Zhao, H.; Li, G.; Li, C.-P. Biosens. Bioelectron. 2019, 144, 111691.
[97]
Wang, M.; Zhu, L.; Zhang, S.; Lou, Y.; Zhao, S.; Tan, Q.; He, L.; Du, M. Sens. Actuators B Chem. 2021, 338, 129826.
[98]
Zhu, P.; Li, S.; Zhou, S.; Ren, N.; Ge, S.; Zhang, Y.; Wang, Y.; Yu, J. Chem. Eng. J. 2021, 420, 127559.
[99]
Liu, X.; Hu, M.; Wang, M.; Song, Y.; Zhou, N.; He, L.; Zhang, Z. Biosens. Bioelectron. 2019, 123, 59.
[100]
Zhou, N.; Ma, Y.; Hu, B.; He, L.; Wang, S.; Zhang, Z.; Lu, S. Biosens. Bioelectron. 2019, 127, 92.
[101]
Lu, S.; Wang, S.; Wu, P.; Wang, D.; Yi, J.; Li, L.; Ding, P.; Pan, H. Adv. Powder Technol. 2021, 32, 2106.
[102]
Wang, M.; Hu, M.; Liu, J.; Guo, C.; Peng, D.; Jia, Q.; He, L.; Zhang, Z.; Du, M. Biosens. Bioelectron. 2019, 132, 8.
[103]
Zhu, Q.-Q.; Zhang, W.-W.; Zhang, H.-W.; Yuan, R.; He, H. J. Mater. Chem. C 2020, 8, 16984.
[104]
Zhao, H.; Xie, W.; Zhang, R.-L.; Wang, X.-D.; Liu, H.-F.; Li, J.; Sha, T.; Guo, X.-S.; Li, J.; Sun, Q.-M.; Zhang, Y.-P.; Li, C.-P. Talanta 2022, 237, 122896.
[105]
Pang, Y.-H.; Guo, L.-L.; Shen, X.-F.; Yang, N.-C.; Yang, C. Electrochim. Acta 2020, 341, 136055.
[106]
Guo, L.-L.; Wang, Y.-Y.; Pang, Y.-H.; Shen, X.-F.; Yang, N.-C.; Ma, Y.; Zhang, Y. J. Electroanal. Chem. 2021, 881, 114931.
[107]
Malode, S.; Shetti, N. Biosens. Bioelectron. 2022, 12, 100250.
[108]
Blaser, M. J.; Melby, M. K.; Lock, M.; Nichter, M. BioEssays 2021, 43, 2000163.
[109]
Koutsoumanis, K.; Allende, A.; álvarez-Ordó?ez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; Ru, G.; Simmons, M.; Skandamis, P.; Suffredini, E.; Argüello, H.; Berendonk, T.; Cavaco, L. M.; Gaze, W.; Schmitt, H.; Topp, E.; Guerra, B.; Liébana, E.; Stella, P.; Peixe, L. EFSA J. 2021, 19, e06651.
[110]
Liguori, J.; Trübswasser, U.; Pradeilles, R.; Le Port, A.; Landais, E.; Talsma, E. F.; Lundy, M.; Béné, C.; Bricas, N.; Laar, A.; Amiot, M. J.; Brouwer, I. D.; Holdsworth, M. Glob. Food Sec. 2022, 32, 100606.
[111]
Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Trends Food Sci. Technol. 2021, 112, 268.
Outlines

/