Review

Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis

  • Jinge Wang ,
  • Wei Zhou ,
  • Jiayi Li ,
  • Yani Ding ,
  • Jihui Gao
Expand
  • School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2022-08-03

  Online published: 2022-09-19

Supported by

Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology(QG202229)

Abstract

Due to the excessive exploitation and utilization of fossil fuels, we are faced with severe energy and environmental problems. Therefore, it's significant to develop electrocatalytic energy conversion, chemical synthesis and pollutant degradation technologies. In order to achieve high activity, selectivity and stability of electrocatalytic reactions, researchers have made a lot of efforts in catalyst design, interface microenvironment regulation and reactor structure optimization. In fact, there is still a wide space on the power supply side for the regulation of electrocatalytic system. Although most researchers choose to use potentiostatic or galvanostatic power supply strategy, some studies have proven that the pulsed power supply strategy by implementing altering potential periodically can improve electrocatalytic performance to a great extent. Compared with traditional regulating methods mentioned above, the pulsed electrocatalysis is much simpler, efficient and repeatable because it just needs to modulate the output potential or current mode. In addition, it is more favorable to be coupled with smart energy in the future. Therefore, the pulsed electrocatalysis has broad development prospects. In this review, we summarized the application and recent progress of the pulsed power supply strategy in classical electrocatalytic systems include electrochemical advanced oxidation processes, electrochemical carbon dioxide reduction, organic electrochemical synthesis, hydrogen production through water electrolysis. Besides, we analyzed the enhancement mechanisms of pulsed electrocatalysis. These enhancement mechanisms can be generalized as follows: (1) By updating the concentration of substance in Nernst diffusion layer during the implementation of switching potential periodically, the concentration polarization can be prevented. Thus, the electrocatalytic activity can be enhanced. Besides, some side reactions caused by mass transfer restriction can also be suppressed. (2) Through altering the adsorption energy of the reaction intermediate and adjusting the coverage of intermediate on the catalyst surface under oscillating potential periodically, the electrocatalytic selectivity of target reaction can be increased. Furthermore, because the active site of catalyst can be modulated to alternate between ideal states for adsorption of intermediate and desorption of product, the Sabatier's theoretical limit on static catalytic site may be breached and the turnover frequency (TOF) of the catalyst can increase by several orders of magnitude during the pulsed dynamic electrocatalysis process. (3) The catalyst surface can be kept in a non-equilibrium state to avoid the inactivation caused by excessive oxidation or reduction of active site or the deposition of some toxic substances on the surface of a catalyst. Thus, the electrocatalytic stability will be improved. Besides, the dynamic reconfiguration of catalysts during pulsed electrocatalysis will influence the activity and selectivity of reaction. Finally, we prospect for the challenges and opportunities of pulsed electrocatalysis in the future.

Cite this article

Jinge Wang , Wei Zhou , Jiayi Li , Yani Ding , Jihui Gao . Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis[J]. Acta Chimica Sinica, 2022 , 80(11) : 1555 -1568 . DOI: 10.6023/A22080342

References

[1]
Papanikolaou, G.; Centi, G.; Perathoner, S.; Lanzafame, P. ACS Catal. 2022, 12, 2861.
[2]
O'Mullane, A. P.; Escudero-Escribano, M.; Stephens, I. E. L.; Krischer, K. ChemPhysChem 2019, 20, 2900.
[3]
Feng, C.; Su, H.; Zeng, J. In Catalysis, Vol. 33, The Royal Society of Chemistry, 2021, p. 447.
[4]
Medford, A. J.; Vojvodic, A.; Hummelshoj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Norskov, J. K. J. Catal. 2015, 328, 36.
[5]
Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Chem. Soc. Rev. 2021, 50, 11785.
[6]
Yang, Y.; Luo, M. C.; Zhang, W. Y.; Sun, Y. J.; Chen, X.; Guo, S. J. Chem 2018, 4, 2054.
[7]
Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745.
[8]
Dai, Y.; Lu, P.; Cao, Z.; Campbell, C. T.; Xia, Y. Chem. Soc. Rev. 2018, 47, 4314.
[9]
Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. ACS Catal. 2022, 12, 331.
[10]
Sebastian-Pascual, P.; Shao-Horn, Y.; Escudero-Escribano, M. Curr. Opin. Electrochem. 2022, 32, 100918.
[11]
Vennekoetter, J.-B.; Sengpiel, R.; Wessling, M. Chem. Eng. J. 2019, 364, 89.
[12]
Nguyen, T. N.; Dinh, C.-T. Chem. Soc. Rev. 2020, 49, 7488.
[13]
Chen, F.-Y.; Wu, Z.-Y.; Adler, Z.; Wang, H. Joule 2021, 5, 1704.
[14]
Pei, S. Z.; You, S. J.; Zhang, J. N. ACS ES&T Eng. 2021, 1, 1502.
[15]
Aran-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. Nat. Energy 2020, 5, 317.
[16]
Blanco, D. E.; Lee, B.; Modestino, M. A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17683.
[17]
Rocha, F.; de Radigues, Q.; Thunis, G.; Proost, J. Electrochim. Acta 2021, 377, 138052.
[18]
Zhu, G.; Pan, C.; Guo, W.; Chen, C.-Y.; Zhou, Y.; Yu, R.; Wang, Z. L. Nano Lett. 2012, 12, 4960.
[19]
Ding, Y.; Zhou, W.; Xie, L.; Chen, S.; Gao, J.; Sun, F.; Zhao, G.; Qin, Y. J. Mater. Chem. A 2021, 9, 15948.
[20]
Liu, C.; Li, Y.; Lin, D.; Hsu, P.-C.; Liu, B.; Yan, G.; Wu, T.; Cui, Y.; Chu, S. Joule 2020, 4, 1459.
[21]
Marks, R. G. H.; Kerpen, K.; Diesing, D.; Telgheder, U. J. Electroanal. Chem. 2021, 895, 115415.
[22]
Lei, J. N.; Li, X. L.; Yuan, M. M.; Xu, H.; Yan, W. China Environ. Sci. 2018, 38, 1757. (in Chinese)
[22]
(雷佳妮, 李晓良, 袁孟孟, 徐浩, 延卫, 中国环境科学, 2018, 38, 1757.)
[23]
Lei, J. N.; Yuan, M. M.; Guo, H.; Yang, H. H.; Xu, H.; Yang, L. Industrial Water Treatment. 2019, 39, 7. (in Chinese)
[23]
(雷佳妮, 袁孟孟, 郭华, 杨鸿辉, 徐浩, 杨柳, 工业水处理, 2019, 39, 7.)
[24]
Bui, J. C.; Kim, C.; Weber, A. Z.; Bell, A. T. ACS Energy Lett. 2021, 6, 1181.
[25]
DiDomenico, R. C.; Hanrath, T. ACS Energy Lett. 2022, 7, 292.
[26]
Jeon, H. S.; Timoshenko, J.; Rettenmaier, C.; Herzog, A.; Yoon, A.; Chee, S. W.; Oener, S.; Hejral, U.; Haase, F. T.; Roldan Cuenya, B. J. Am. Chem. Soc. 2021, 143, 7578.
[27]
Kim, C.; Weng, L.-C.; Bell, A. T. ACS Catal. 2020, 10, 12403.
[28]
Kimura, K. W.; Casebolt, R.; DaSilva, J. C.; Kauffman, E.; Kim, J.; Dunbar, T. A.; Pollock, C. J.; Suntivich, J.; Hanrath, T. ACS Catal. 2020, 10, 8632.
[29]
Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Aran-Ais, R. M.; Jeon, H. S.; Haase, F. T.; Hejral, U.; Grosse, P.; Kuehl, S.; Davis, E. M.; Tian, J.; Magnussen, O.; Cuenya, B. R. Nat. Catal. 2022, 5, 259.
[30]
Casebolt, R.; Levine, K.; Suntivich, J.; Hanrath, T. Joule 2021, 5, 1987.
[31]
Gopeesingh, J.; Ardagh, M. A.; Shetty, M.; Burke, S. T.; Dauenhauer, P. J.; Abdelrahman, O. A. ACS Catal. 2020, 10, 9932.
[32]
Kim, D.; Zhou, C.; Zhang, M.; Cargnello, M. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2113382118.
[33]
Li, Z.; Yan, Y.; Xu, S.-M.; Zhou, H.; Xu, M.; Ma, L.; Shao, M.; Kong, X.; Wang, B.; Zheng, L.; Duan, H. Nat. Commun. 2022, 13, 147.
[34]
Wang, D.; Jiang, T.; Wan, H.; Chen, Z.; Qi, J.; Yang, A.; Huang, Z.; Yuan, Y.; Lei, A. Angew. Chem. Int. Ed. 2022, e202201543.
[35]
Wattanakit, C.; Yutthalekha, T.; Asssavapanumat, S.; Lapeyre, V.; Kuhn, A. Nat. Commun. 2017, 8, 2087.
[36]
Liu, T.; Wang, J.; Yang, X.; Gong, M. J. Energy Chem. 2021, 59, 69.
[37]
de Radigues, Q.; Thunis, G.; Proost, J. Int. J. Hydrogen Energy 2019, 44, 29432.
[38]
Demir, N.; Kaya, M. F.; Albawabiji, M. S. Int. J. Hydrogen Energy 2018, 43, 17013.
[39]
Hristova, D.; Betova, I.; Tzvetkoff, T. Int. J. Hydrogen Energy 2013, 38, 8232.
[40]
Beattie, S. D.; Dahn, J. R. J. Electrochem. Soc. 2003, 150, A894.
[41]
Chang, L. M.; An, M. Z.; Guo, H. F.; Shi, S. Y. Appl. Surf. Sci. 2006, 253, 2132.
[42]
Fang, Y.; Liu, J.; Yu, D. J.; Wicksted, J. P.; Kalkan, K.; Topal, C. O.; Flanders, B. N.; Wu, J.; Li, J. J. Power Sources 2010, 195, 674.
[43]
Natter, H.; Hempelmann, R. J. Phys. Chem. 1996, 100, 19525.
[44]
Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Adv. Mater. 2000, 12, 582.
[45]
Zhang, Y.; Li, G. H.; Wu, Y. C.; Zhang, B.; Song, W. H.; Zhang, L. Adv. Mater. 2002, 14, 1227.
[46]
Zhou, W.; Ding, Y.; Gao, J.; Kou, K.; Wang, Y.; Meng, X.; Wu, S.; Qin, Y. Environ. Sci. Pollut. Res. 2018, 25, 6015.
[47]
Zhou, W.; Gao, J. H.; Ding, Y.; Zhao, H. Q.; Meng, X. X.; Wang, Y.; Kou, K. K.; Xu, Y. Q.; Wu, S. H.; Qin, Y. K. Chem. Eng. J. 2018, 338, 709.
[48]
Xu, J.; Liu, C.; Hsu, P.-C.; Zhao, J.; Wu, T.; Tang, J.; Liu, K.; Cui, Y. Nat. Commun. 2019, 10, 2440.
[49]
Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P. Appl. Catal. B 2017, 202, 217.
[50]
Wang, H. J.; Li, J.; Quan, X.; Wu, Y.; Li, G. F. Spectrosc. Spectr. Anal. 2007, 2506. (in Chinese)
[50]
(王慧娟, 李杰, 全燮, 吴彦, 李国锋, 光谱学与光谱分析, 2007, 2506.)
[51]
Chen, Y.; Zhang, G.; Liu, H.; Qu, J. Angew. Chem. Int. Ed. 2019, 58, 8134.
[52]
Zhang, S.; Sun, M.; Hedtke, T.; Deshmukh, A.; Zhou, X.; Weon, S.; Elimelech, M.; Kim, J.-H. Environ. Sci. Technol. 2020, 54, 10868.
[53]
Lei, J. N.; Xu, Z. C.; Xu, H.; Qiao, D.; Liao, Z. W.; Yan, W.; Wang, Y. J. Environ. Chem. Eng. 2020, 8, 103773.
[54]
Ma, X. J.; Yan, Y.; Dai, Q. Z.; Gao, J. X.; Liu, S. J.; Xia, Y. J. Sep. Purif. Technol. 2021, 279, 119775.
[55]
Jiang, Z. H.; Cheng, Z. L.; Yan, C. Q.; Zhang, X.; Tian, Y. J.; Zhang, X. M.; Quan, X. J. ACS Omega 2021, 6, 25539.
[56]
Yuan, Y. N.; Tang, J. J.; Tao, C. Y.; Ma, X. X.; Shu, J. C. Environ. Chem. 2017, 36, 2658. (in Chinese)
[56]
(袁玉南, 唐金晶, 陶长元, 马小霞, 舒建成, 环境化学, 2017, 36, 2658.)
[57]
Wei, J. J.; Gao, X. H.; Hei, L. F.; Askari, J.; Li, C. M. Int. J. Miner. Metall. Mater. 2013, 20, 106.
[58]
Mu’azu, N. D.; Al-Yahya, M.; Al-Haj-Ali, A. M.; Abdel-Magid, I. M. J. Environ. Chem. Eng. 2016, 4, 2477.
[59]
Wang, J. D.; Yao, J. C.; Wang, L.; Xue, Q. W.; Hu, Z. T.; Pan, B. J. Sep. Purif. Technol. 2020, 230, 115851.
[60]
Wei, J. J.; Zhu, X. P.; Ni, J. R. Electrochim. Acta 2011, 56, 5310.
[61]
Diao, Y. H.; Wei, F.; Zhang, L. M.; Zhao, Q.; Sun, H. L.; Yao, Y. W. Int. J. Environ. Anal. Chem. 2022, 102, 1126.
[62]
Zhan, W.; Du, Y.; Lan, J.; Lei, R.; Li, R.; Du, D.; Zhang, T. C. J. Mol. Liq. 2022, 348, 118006.
[63]
Lu, Z. H.; Tang, J. L.; Mendoza, M. D. L.; Chang, D. M.; Cai, L. K.; Zhang, L. H. J. Electroanal. Chem. 2015, 745, 37.
[64]
Bushuyev, O. S.; De Luna, P.; Cao Thang, D.; Tao, L.; Saur, G.; van de lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825.
[65]
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107.
[66]
Costentin, C.; Robert, M.; Savéant, J.-M. Chem. Soc. Rev. 2013, 42, 2423.
[67]
Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198.
[68]
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631.
[69]
Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Sci. Adv. 2020, 6, eaay3111.
[70]
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; N?rskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Chem. Rev. 2019, 119, 7610.
[71]
Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem. 2018, 36, 961.
[72]
Li, Z. Y.; Yang, Y. S.; Wei, M. Acta Chim. Sinica 2022, 80, 199. (in Chinese)
[72]
(李泽洋, 杨宇森, 卫敏, 化学学报, 2022, 80, 199.)
[73]
Shiratsuchi, R.; Aikoh, Y.; Nogami, G. J. Electrochem. Soc. 1993, 140, 3479.
[74]
Nogami, G.; Itagaki, H.; Shiratsuchi, R. J. Electrochem. Soc. 1994, 141, 1138.
[75]
Jannsch, Y.; Leung, J. J.; Haemmerle, M.; Magori, E.; Wiesner-Fleischer, K.; Simon, E.; Fleischer, M.; Moos, R. Electrochem. Commun. 2020, 121, 106861.
[76]
Lee, J.; Tak, Y. Electrochim. Acta 2001, 46, 3015.
[77]
Friebe, P.; Bogdanoff, P.; AlonsoVante, N.; Tributsch, H. J. Catal. 1997, 168, 374.
[78]
Engelbrecht, A.; Uhlig, C.; Stark, O.; Haemmerle, M.; Schmid, G.; Magori, E.; Wiesner-Fleischer, K.; Fleischer, M.; Moos, R. J. Electrochem. Soc. 2018, 165, J3059.
[79]
Kedzierzawski, P.; Augustynski, J. J. Electrochem. Soc. 1994, 141, L58.
[80]
Ishimaru, S.; Shiratsuchi, R.; Nogami, G. J. Electrochem. Soc. 2000, 147, 1864.
[81]
Shiratsuchi, R.; Nagami, G. J. Electrochem. Soc. 1996, 143, 582.
[82]
Blom, M. J. W.; Smulders, V.; van Swaaij, W. P. M.; Kersten, S. R. A.; Mul, G. Appl. Catal. B 2020, 268, 118420.
[83]
Casebolt, R.; Kimura, K. W.; Levine, K.; Cimada DaSilva, J. A.; Kim, J.; Dunbar, T. A.; Suntivich, J.; Hanrath, T. ChemElectroChem 2021, 8, 681.
[84]
Gupta, N.; Gattrell, M.; MacDougall, B. J. Appl. Electrochem. 2006, 36, 161.
[85]
Lin, S.-C.; Chang, C.-C.; Chiu, S.-Y.; Pai, H.-T.; Liao, T.-Y.; Hsu, C.-S.; Chiang, W.-H.; Tsai, M.-K.; Chen, H. M. Nat. Commun. 2020, 11, 3525.
[86]
Tang, Z.; Nishiwaki, E.; Fritz, K. E.; Hanrath, T.; Suntivich, J. ACS Appl. Mater. Interfaces 2021, 13, 14050.
[87]
Yano, J.; Yamasaki, S. J. Appl. Electrochem. 2008, 38, 1721.
[88]
Lum, Y.; Ager, J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
[89]
Zhao, Y.; Chang, X.; Malkani, A. S.; Yang, X.; Thompson, L.; Jiao, F.; Xu, B. J. Am. Chem. Soc. 2020, 142, 9735.
[90]
Chang, C.-J.; Hung, S.-F.; Hsu, C.-S.; Chen, H.-C.; Lin, S.-C.; Liao, Y.-F.; Chen, H. M. ACS Cent. Sci. 2019, 5, 1998.
[91]
De Luna, P.; Quintero-Bermudez, R.; Cao-Thang, D.; Ross, M. B.; Bushuyev, O. S.; Todorovic, P.; Regier, T.; Kelley, S. O.; Yang, P.; Sargent, E. H. Nat. Catal. 2018, 1, 103.
[92]
Chou, T.-C.; Chang, C.-C.; Yu, H.-L.; Yu, W.-Y.; Dong, C.-L.; Velasco-Velez, J. J.; Chuang, C.-H.; Chen, L.-C.; Lee, J.-F.; Chen, J.-M.; Wu, H.-L. J. Am. Chem. Soc. 2020, 142, 2857.
[93]
Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Science 2017, 358, 1187.
[94]
Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194.
[95]
Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14, 76.
[96]
Simon, G. H.; Kley, C. S.; Roldan Cuenya, B. Angew. Chem. Int. Ed. 2021, 60, 2561.
[97]
Kumar, B.; Brian, J. P.; Atla, V.; Kumari, S.; Bertram, K. A.; White, R. T.; Spurgeon, J. M. ACS Catal. 2016, 6, 4739.
[98]
Lei, Q.; Zhu, H.; Song, K.; Wei, N.; Liu, L.; Zhang, D.; Yin, J.; Dong, X.; Yao, K.; Wang, N.; Li, X.; Davaasuren, B.; Wang, J.; Han, Y. J. Am. Chem. Soc. 2020, 142, 4213.
[99]
Oguma, T.; Azumi, K. Electrochemistry 2020, 88, 451.
[100]
Kimura, K. W.; Fritz, K. E.; Kim, J.; Suntivich, J.; Abruna, H. D.; Hanrath, T. ChemSusChem 2018, 11, 1781.
[101]
Xu, Y.; Edwards, J. P.; Liu, S.; Miao, R. K.; Huang, J. E.; Gabardo, C. M.; O'Brien, C. P.; Li, J.; Sargent, E. H.; Sinton, D. ACS Energy Lett. 2021, 6, 809.
[102]
Xin, H.; Wang, H.; Zhang, W.; Chen, Y.; Ji, Q.; Zhang, G.; Liu, H.; Taylor, A. D.; Qu, J. Angew. Chem. Int. Ed. 2022, 61, e202206236.
[103]
Lim, C. F. C.; Harrington, D. A.; Marshall, A. T. Electrochim. Acta 2016, 222, 133.
[104]
Le Duff, C. S.; Lawrence, M. J.; Rodriguez, P. Angew. Chem. Int. Ed. 2017, 56, 12919.
[105]
Iijima, G.; Inomata, T.; Yamaguchi, H.; Ito, M.; Masuda, H. ACS Catal. 2019, 9, 6305.
[106]
Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[107]
Zhang, H. Y.; Tang, R. P.; Shi, X. L.; Jie, L.; Wu, J. W. Chin. J. Org. Chem. 2019, 39, 1837. (in Chinese)
[107]
(张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
[108]
Wang, Z. H.; Ma, C.; Fang, P.; Xu, H. C.; Mei, T. S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese)
[108]
(王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.)
[109]
Hayashi, K.; Griffin, J.; Harper, K. C.; Kawamata, Y.; Baran, P. S. J. Am. Chem. Soc. 2022, 144, 5762.
[110]
Rodrigo, S.; Um, C.; Mixdorf, J. C.; Gunasekera, D.; Nguyen, H. M.; Luo, L. Org. Lett. 2020, 22, 6719.
[111]
Roman, A. M.; Spivey, T. D.; Medlin, J. W.; Holewinski, A. Ind. Eng. Chem. Res. 2020, 59, 19999.
[112]
Schotten, C.; Taylor, C. J.; Bourne, R. A.; Chamberlain, T. W.; Nguyen, B. N.; Kapur, N.; Willans, C. E. React. Chem. Eng. 2021, 6, 147.
[113]
Vehrenberg, J.; Vepsalainen, M.; Macedo, D. S.; Rubio-Martinez, M.; Webster, N. A. S.; Wessling, M. Microporous Mesoporous Mat. 2020, 303, 110218.
[114]
Ardagh, M. A.; Abdelrahman, O. A.; Dauenhauer, P. J. ACS Catal. 2019, 9, 6929.
[115]
Ardagh, M. A.; Shetty, M.; Kuznetsov, A.; Zhang, Q.; Christopher, P.; Vlachos, D. G.; Abdelrahman, O. A.; Dauenhauer, P. J. Chem. Sci. 2020, 11, 3501.
[116]
Shetty, M.; Walton, A.; Gathmann, S. R.; Ardagh, M. A.; Gopeesingh, J.; Resasco, J.; Birol, T.; Zhang, Q.; Tsapatsis, M.; Vlachos, D. G.; Christopher, P.; Frisbie, C. D.; Abdelrahman, O. A.; Dauenhauer, P. J. ACS Catal. 2020, 10, 12666.
[117]
Bockris, J. O. M.; Ammar, I. A.; Huq, A. K. M. S. J. Phys. Chem. 1957, 61, 879.
[118]
Bockris, J. O. M.; Pentland, N. Trans. Faraday Soc. 1952, 48, 833.
[119]
Bockris, J. O.; Dandapani, B.; Cocke, D.; Ghoroghchian, J. Int. J. Hydrogen Energy 1985, 10, 179.
[120]
Ghoroghchian, J.; Bockris, J. O. M. Int. J. Hydrogen Energy 1985, 10, 101.
[121]
Shimizu, N.; Hotta, S.; Sekiya, T.; Oda, O. J. Appl. Electrochem. 2006, 36, 419.
[122]
Vanags, M.; Kleperis, J.; Bajars, G. Int. J. Hydrogen Energy 2011, 36, 1316.
[123]
Vanags, M.; Kleperis, J.; Bajars, G. Latv. J. Phys. Tech. Sci. 2011, 48, 34.
[124]
Vincent, I.; Choi, B.; Nakoji, M.; Ishizuka, M.; Tsutsumi, K.; Tsutsumi, A. Int. J. Hydrogen Energy 2018, 43, 10240.
[125]
Khosla, N. K.; Venkatachalam, S.; Somasundaran, P. J. Appl. Electrochem. 1991, 21, 986.
[126]
Martin, M.; Hourng, L. W. Int. J. Energy Res. 2014, 38, 106.
[127]
Vilasmongkolchai, T.; Songprakorp, R.; Sudaprasert, K. In 3rd International Conference on Mechanics and Mechatronics Research (ICMMR), EDP Sciences, Chongqing, China, 2016, 14001.
[128]
Yang, F. C.; Kim, M. J.; Brown, M.; Wiley, B. J. Adv. Energy Mater. 2020, 10, 2001174.
Outlines

/