Review

Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers

  • Zhenyan Zhang ,
  • Lin Liu ,
  • Donghua Xu ,
  • Ruoyu Zhang ,
  • Hengchong Shi ,
  • Shifang Luan ,
  • Jinghua Yin
Expand
  • a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
    b Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
    c College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
These authors contributed equally to this work

Received date: 2021-12-28

  Online published: 2022-10-14

Supported by

National Natural Science Foundation of China(51973221); National Natural Science Foundation of China(51773218); National Key Research and Development Program of China(2020YFC1106900); Production Demonstration Platform for Biomedical Materials of Ministry of Industry and Information Technology of China(TC190H3ZV/1); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2020Z086); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2021Z070); Major Science and Technology Innovation Project of Shandong Province(2019JZZY011105)

Abstract

Thermoplastic polyurethane (TPU) elastomer is widely used in biomedical field because of its good processability, mechanical property and biocompatibility. Most TPUs are composed of macromolecular diols as soft segments, diisocyanate and chain extenders as hard segments, which provide the elasticity of the matrix and the framework rigidity of the chain network, respectively. The structural design of chain extender diol/ diamine and diisocyanate is the main method to construct functional TPUs. Researchers designed and prepared the functional monomers according to the specific clinical scene or usage requirements, and developed the corresponding medical TPUs. In this paper, the types and characteristics of macromolecular diols, diisocyanate and chain extenders are introduced. Their unique microphase separation structures are analyzed, and the relationship between the chemical/physical structure and the final performance is discussed. Then, the research progress and advanced applications of TPU in biomedicine at home and abroad are summarized. The applications of TPU as antibacterial, anticoagulant, hydrolytic and oxidation resistant, self-healing and degradable materials are emphasized. Finally, by summarizing and analyzing various standards of biomedical TPU and its device, the key problems of industrial application are put forward, and the future development direction of TPU is prospected.

Cite this article

Zhenyan Zhang , Lin Liu , Donghua Xu , Ruoyu Zhang , Hengchong Shi , Shifang Luan , Jinghua Yin . Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers[J]. Acta Chimica Sinica, 2022 , 80(10) : 1436 -1447 . DOI: 10.6023/A21120593

References

[1]
(a) Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Drug. Des. Devel. Ther. 2018, 12, 3117.
[1]
(b) Lin, X. Q.; Chen, W. S.; Zhang, Q. Q. Chem. Ind. Eng. Prog. 2020, 39, 212. (in Chinese)
[1]
(林晓琪, 陈维胜, 张芹芹, 化工进展, 2020, 39, 212).
[2]
Wang, W.; Wang, C. In The Design and Manufacture of Medical Devices, Eds.: Davim, J. P., Woodhead Publishing, Cambridge, United Kingdom, 2012, p. 115.
[3]
Lee, S. Y.; Wu, S. C.; Chen, H.; Tsai, L. L.; Tzeng, J. J.; Lin, C. H.; Lin, Y. M. Biomed. Res. Int. 2018, 3240571.
[4]
Jenney, C.; Millson, P.; Grainger, D. W.; Grubbs, R.; Gunatillake, P.; McCarthy, S. J.; Runt, J.; Beith, J. Adv. Nano. Res. 2020, 1, 2000032.
[5]
Joo, Y. S.; Cha, J. R.; Gong, M. S. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018, 91, 426.
[6]
Naureen, B.; Haseeb, A.; Basirun, W. J.; Muhamad, F. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 118, 111228.
[7]
Zdrahala, R. J.; Zdrahala, I. J. J. Biomater. Appl. 1999, 14, 67.
[8]
Wendels, S.; Averous, L. Bioact. Mater. 2021, 6, 1083.
[9]
Ou, W.; Qiu, H.; Chen, Z.; Xu, K. Biomaterials 2011, 32, 31787.
[10]
Lyman, D. J.; Knutson, K.; McNeil, B.; Shibatani, K. Transactions of the American Society of Artificial Internal Organs 1975, 21, 49.
[11]
Takahara, A.; Tashita, J. I.; Kajiyama, T.; Takayanagi, M.; MacKnight, W. J. Polymer 1985, 26, 987.
[12]
Lyu, S.; Untereker, D. Int. J. Mol. Sci. 2009, 10, 4033.
[13]
Santerre, J. P.; Woodhouse, K.; Laroche, G.; Labow, R. S. Biomaterials 2005, 26, 7457.
[14]
Špírková, M.; Serkis, M.; Poręba, R.; Machová, L. K.; Hodan, J.; Kredatusová, J.; Kubies, D.; Zhigunov, A. Polym. Degrad. Stab. 2016, 125, 115.
[15]
Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Biotechnol. Adv. 2020, 39, 107457.
[16]
Lopez-Lopez, G.; Pascual, A.; Perea, E. J. J. Med. Microbiol. 1991, 34, 349.
[17]
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Angew. Chem. Int. Ed. 2013, 52, 9422.
[18]
Das, A.; Mahanwar, P. Adv. Ind. Eng. Polym. Res. 2020, 3, 93.
[19]
Chattopadhyay, D. K.; Raju, K. V. S. N. Prog. Polym. Sci. 2007, 32, 352.
[20]
Nasar, A. S.; Subramani, S.; Radhakrishnan, G. Polym. Int. 1999, 48, 614.
[21]
Brown, D. W.; Lowry, R. E.; Smith, L. E. Macromolecules 1980, 13, 248.
[22]
Prisacariu, C. Polyurethane Elastomers: from morphology to mechanical aspects, Springer Science & Business Media, Berlin, Germany, 2011, p. 14.
[23]
Que, Y. H.; Shi, Y.; Liu, L. Z.; Wang, Y. X.; Wang, C. C.; Zhang, H. C.; Han, X. Y. Polymers (Basel) 2021, 13, 3475.
[24]
Joseph, J.; Patel, R. M.; Wenham, A.; Smith, J. R. Trans. IMF 2018, 96, 121.
[25]
Luo, N.; Wang, D. N.; Ying, S. K.; Qian, Y. X.; Zhu, Z. Q. Chem. J. Chinese U. 1994, 07, 1076. (in Chinese)
[25]
(罗宁, 王得宁, 应圣康, 钱义祥, 朱支蔷, 高等学校化学学报, 1994, 07, 1076.)
[26]
Hook, A. L.; Chang, C. Y.; Yang, J.; Luckett, J.; Cockayne, A.; Atkinson, S.; Mei, Y.; Bayston, R.; Irvine, D. J.; Langer, R.; Anderson, D. G.; Williams, P.; Davies, M. C.; Alexander, M. R. Nat. Biotechnol. 2012, 30, 868.
[27]
Palencia, M.; Lerma, T. A.; Arrieta, Á. A. Mater. Today Commun. 2020, 22, 100708.
[28]
Zhang, Y.; He, W.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Mater. Chem. Front. 2017, 1, 361.
[29]
Song, Y.; Gao, Y.; Wan, X.; Luo, F.; Li, J.; Tan, H.; Fu, Q. RSC Adv. 2016, 6, 17336.
[30]
(a) Qian, L.; Guan, Y.; He, B.; Xiao, H. Polymer, 2008, 49, 2471.
[30]
(b) Peng, K. M.; Ding, W.; Tu, W. P.; Hu, J. Q.; Liu, C.; Yang, J. Acta Chim. Sinica 2016, 74, 713. (in Chinese)
[30]
(彭开美, 丁伟, 涂伟萍, 胡剑青, Liu Chao, Yang Jian, 化学学报, 2016, 74, 713).
[31]
Mohammadi, A.; Doctorsafaei, A. H.; Burujeny, S. B.; Rudbari, H. A.; Kordestani, N.; Najafabadi, S. A. A. Chem. Eng. J. 2020, 381, 122776.
[32]
Hsu, S. H.; Tseng, H. J.; Lin, Y. C. Biomaterials 2010, 31, 6796.
[33]
Zhang, X.; Zhu, M.; Wang, W.; Yu, D. Prog. Org. Coat. 2018, 120, 10.
[34]
Mankoci, S.; Kaiser, R. L.; Sahai, N.; Barton, H. A.; Joy, A. ACS Biomater. Sci. Eng. 2017, 3, 2588.
[35]
Mankoci, S.; Ewing, J.; Dalai, P.; Sahai, N.; Barton, H. A.; Joy, A. Biomacromolecules 2019, 20, 4096.
[36]
Wang, C. H.; Hou, G. G.; Du, Z. Z.; Cong, W.; Sun, J. F.; Xu, Y. Y.; Liu, W. S. Polym. J. 2015, 48, 259.
[37]
Yu, H.; Liu, L.; Yang, H.; Zhou, R.; Che, C.; Li, X.; Li, C.; Luan, S. F.; Yin, J. H.; Shi, H. C. ACS Appl. Mater. Interfaces 2018, 10, 39257.
[38]
Yu, H.; Liu, L.; Li, X.; Zhou, R.; Yan, S.; Li, C.; Luan, S.; Yin, J.; Shi, H. Chem. Eng. J. 2019, 360, 1030.
[39]
Liu, L.; Shi, H.; Yu, H.; Zhou, R.; Yin, J.; Luan, S. Biomater. Sci. 2019, 7, 5035.
[40]
Wang, C.; Mu, C.; Lin, W.; Xiao, H. Adv. Colloid Interface Sci. 2020, 283, 102235.
[41]
Xing, C. M.; Meng, F. N.; Quan, M.; Ding, K.; Dang, Y.; Gong, Y. K. Acta Biomater. 2017, 59, 129.
[42]
Gao, Q.; Li, X.; Yu, W.; Jia, F.; Yao, T.; Jin, Q.; Ji, J. ACS Appl. Mater. Interfaces 2020, 12, 2999.
[43]
Chae, K.; Jang, W. Y.; Park, K.; Lee, J.; Kim, H.; Lee, K.; Lee, C. K.; Lee, Y.; Lee, S. H.; Seo, J. Sci. Adv. 2020, 6, eabb0025.
[44]
Jiang, S.; Cao, Z. Adv. Mater. 2010, 22, 920.
[45]
Mi, L.; Jiang, S. Angew. Chem. Int. Ed. 2014, 53, 1746.
[46]
Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S. Angew. Chem. Int. Ed. 2008, 47, 8831.
[47]
Wang, C.; Ma, C.; Mu, C.; Lin, W. RSC Adv. 2017, 7, 27522.
[48]
Ye, S. H.; Hong, Y.; Sakaguchi, H.; Shankarraman, V.; Luketich, S. K.; D'Amore, A.; Wagner, W. R. ACS Appl. Mater. Interfaces 2014, 6, 22796.
[49]
Wang, C.; Ma, C.; Mu, C.; Lin, W. Langmuir 2014, 30, 12860.
[50]
Nikam, S. P.; Nettleton, P.; Chen, K.; Hsu, Y. H.; Becker, M. L. Biomacromolecules 2020, 21, 2714.
[51]
Wen, J.; Sun, Z.; Fan, H.; Chen, Y.; Yan, J. Prog. Org. Coat. 2019, 131, 291.
[52]
Qiao, Z.; Xu, D.; Yao, Y.; Song, S.; Yin, M.; Luo, J. Polym. Int. 2019, 68, 1361.
[53]
(a) Biran, R.; Pond, D. Adv. Drug. Deliv. Rev. 2017, 112, 12.
[53]
(b) Shi, H. C.; Che, C. Y.; Luan, S. F.; Yin, J. H. Journal of Functional Polymers, 2020, 33, 141. (in Chinese)
[53]
(石恒冲, 车超越, 栾世方, 殷敬华, 功能高分子学报, 2020, 33, 141).
[54]
Sukavaneshvar, S. Adv. Drug. Deliv. Rev. 2017, 112, 24.
[55]
Badv, M.; Bayat, F.; Weitz, J. I.; Didar, T. F. Biomaterials 2020, 258, 120291.
[56]
He, M.; Gao, K.; Zhou, L.; Jiao, Z.; Wu, M.; Cao, J.; You, X.; Cai, Z.; Su, Y.; Jiang, Z. Acta Biomater. 2016, 40, 142.
[57]
Zhou, X. F.; Jiang, X. L.; Gu, N. J. Chem. Ind. Eng. (China) 2009, 60, 1341. (in Chinese)
[57]
(周雪峰, 江筱莉, 顾宁, 化工学报, 2009, 60, 1341.)
[58]
Yan, S. P.; Zhang, C.; Lv, H. J. Funct. Polym. 2020, 33, 1. (in Chinese)
[58]
(闫树鹏, 张冲, 吕华, 功能高分子学报, 2020, 33, 1.)
[59]
Ye, S.; Hong, Y.; Sakaguchi, H.; Shankarraman, V.; Luketich, S. K.; Amore, A. D.; Wagner, W. R. ACS Appl. Mater. Interfaces 2014, 6, 22796.
[60]
Smith, R. S.; Zhang, Z.; Bouchard, M.; Li, J.; Heather, S. L.; Gregory, R. B.; David, L. L.; Weaver, D.; Laurence, A. R.; Coury, A.; Biggerstaff, J.; Sukavaneshvar, S.; Langer, R.; Loose, C. Sci. Transl. Med. 2012, 4, 153ra132.
[61]
Holmer, E.; Kurachi, K.; Söderström, G. Biochem. J. 1981, 193, 395.
[62]
Bourin, M. C.; Lindahl, U. Biochem. J. 1993, 289, 313.
[63]
Nahain, A. A.; Ignjatovic, V.; Monagle, P.; Tsanaktsidis, J.; Ferro, V. Med. Res. Rev. 2018, 38, 1582.
[64]
Yan, Y.; Wang, X. H.; Yin, D.; Zhang, R. J. Bioact. Compat. Polym. 2007, 22, 323.
[65]
Zia, F.; Zia, K. M.; Zuber, M.; Tabasum, S.; Rehman, S. Int. J. Biol. Macromol. 2016, 84, 101.
[66]
Lu, Y.; Shen, L.; Gong, F.; Cui, J.; Rao, J.; Chen, J.; Yang, W. Polym. Int. 2012, 61, 1433.
[67]
Schollenberger, C. S.; Stewart, F. D. Die Angew. Makromol. Chem. 1973, 29, 413.
[68]
Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J. M.; Laycock, B. Prog. Polym. Sci. 2019, 90, 211.
[69]
Chaffin, K. A.; Chen, X.; McNamara, L.; Bates, F. S.; Hillmyer, M. A. Macromolecules 2014, 47, 5220.
[70]
Loh, X. J.; Goh, S. H.; Li, J. Biomaterials 2007, 28, 4113.
[71]
Pretsch, T.; Jakob, I.; Müller, W. Polym. Degrad. Stab. 2009, 94, 61.
[72]
Jewrajka, S. K.; Yilgor, E.; Yilgor, I.; Kennedy, J. P. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 38.
[73]
Gunatillake, P. A.; Meijs, G. F.; Rizzardo, E.; Chatelier, R. C.; McCarthy, S. J.; Brandwood, A.; Schindhelm, K. J. Appl. Polym. Sci. 1992, 46, 319.
[74]
Jayabalan, M.; Lizymol, P. P.; Thomas, V. Polym. Int. 2000, 49, 88.
[75]
Wiggins, M. J.; Wilkoff, B.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res. 2001, 58, 302.
[76]
Christenson, E. M.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res., Part A 2004, 70A, 245.
[77]
Zhao, Q.; Topham, N.; Anderson, J. M. Hiltner, A.; Lodoen, G.; Payet, C. R. J. Biomed. Mater. Res. 1991, 25, 177.
[78]
Cozzens, D.; Ojha, U.; Kulkarni, P.; Faust, R.; Desai, S. J. Biomed. Mater. Res. Part A 2010, 95A, 774.
[79]
Schubert, M. A.; Wiggins, M. J.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res. 1997, 34, 493.
[80]
Hornat, C. C.; Urban, M. W. Prog. Polym. Sci. 2020, 102, 101208.
[81]
Yao, Y.; Xu, Z.; Liu, B.; Xiao, M.; Yang, J.; Liu, W. Adv. Funct. Mater. 2020, 31, 2006944.
[82]
Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Angew. Chem. Int. Ed. 2018, 57, 13838.
[83]
Zhang, L.; You, Z. Chin. J. Polym. Sci. 2021, 39, 1281.
[84]
Lou, J.; Liu, Z.; Yang, L.; Guo, Y.; Lei, D.; You, Z. Adv. Funct. Mater. 2021, 31, 2008328.
[85]
Rekondo, A.; Martin, R.; Luzuriaga, A. R. D.; Cabañero, G.; Grande, H. J.; Odriozola, I. Mater. Horiz. 2014, 1, 237.
[86]
Zhang, C.; Liang, H.; Liang, D.; Lin, Z.; Chen, Q.; Feng, P.; Wang, Q. Angew. Chem. Int. Ed. 2021, 60, 4289.
[87]
Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B.; Jia, X.; Bao, Z. Adv. Mater. 2018, 30, 1801435.
[88]
Ying, W. B.; Wang, G.; Kong, Z.; Yao, C. K.; Wang, Y.; Hu, H.; Li, F.; Chen, C.; Tian, Y.; Zhang, J.; Zhang, R.; Zhu, J. Adv. Funct. Mater. 2021, 31, 2009869.
[89]
Xu, C.; Huang, Y.; Wu, J.; Tang, L.; Hong, Y. ACS Appl. Mater. Interfaces 2015, 7, 20377.
[90]
Liu, L.; Wei, Z. Y.; Gao, J.; Wang, P.; Qi, M. Chin. J. Tissue Eng. Res. 2008, 12, 2735. (in Chinese)
[90]
(刘炼, 魏志勇, 高军, 王沛, 齐民, 中国组织工程与临床康复, 2008, 12, 2735.)
[91]
Jiang, C.; Zhang, L.; Yang, Q.; Huang, S.; Shi, H.; Long, Q.; Qian, B.; Liu, Z.; Guan, Q.; Liu, M.; Yang, R.; Zhao, Q.; You, Z.; Ye, X. Nat. Commun. 2021, 12, 4395.
[92]
Li, F.; Xu, Z.; Hu, H.; Kong, Z.; Chen, C.; Tian, Y.; Zhang, W.; Ying, W. B.; Zhang, R.; Zhu, J. Chem. Eng. J. 2021, 410, 128363.
Outlines

/