Communication

Highly Selective Synthesis of (Z)-N-vinyl Ring N,O-Acetal Derivatives by Multi-component Continuous Flow

  • Jingpeng Li ,
  • Qi Yang ,
  • Zhou Zhang ,
  • Guiyun Zeng ,
  • Teng Liu ,
  • Chao Huang
Expand
  • a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
    b College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China

Received date: 2022-10-08

  Online published: 2022-10-26

Supported by

National Natural Science Foundation of China(21662046); National Natural Science Foundation of China(21202142); Scientific Research Fund of Yunnan Provincial Department of Education(2021Y667)

Abstract

A three-component synthetic method for the efficient preparation of (Z)-N-vinyl ring N,O-acetal derivatives under continuous flow technology was developed. Recently, the continuous flow technology applied in organic synthesis has attracted significant attention, and become useful alternatives to the conventional operations. Furthermore, advances in the translation from ‘‘batch’’ to continuous ‘‘flow’’ mode have expanded rapidly, offering valuable opportunities for a variety of research areas. By using cheap and readily available chemicals as the reaction's starting material, continuous flow synthesis technology has the advantages of excellent reaction process control, high surface area volume ratio, efficient heat exchange, effective mixing, reduced reaction time, and so on. The controllable series cyclization reaction takes place in continuous flow, which precisely regulates the reaction of o-hydroxybenzylamine with aldehydes to form a Schiff base intermediate. Then the intermediate is discharged in time and undergoes an oxa-Michael addition reaction with diethyl acetylenedicarboxylate under base conditions. It experiences a unique intramolecular rearrangement process to form C—O and C—N bonds. In continuous flow synthesis, amines and aldehydes are mixed in tube A and diethyl acetylenedicarboxylate is placed in tube B. First, the mixture of tube A is injected into the first plastic coil reactor in heating bath (HB1), 80 ℃ kept for 10 min. The mixture is transported to the next step and mixed with diethyl acetylene dicarboxylate from tube B in a small T-shaped mixer, injected into the second glass column reactor (HB2), 80 ℃ retained for 40 min. Finally, the nitrogen-, oxygen-containing six-membered ring or seven-membered ring heterocyclics were precisely synthesized with high selectivity, and the two-step synthesis takes only 50 min. The application of continuous flow synthesis technology can avoid the problems involving incomplete reaction of two-component, more side reactions, and provides an alternative method for assembling multi- component with high selectivity and high yield (up to 96%), providing a reference for the high-value conversion of chemical raw materials.

Cite this article

Jingpeng Li , Qi Yang , Zhou Zhang , Guiyun Zeng , Teng Liu , Chao Huang . Highly Selective Synthesis of (Z)-N-vinyl Ring N,O-Acetal Derivatives by Multi-component Continuous Flow[J]. Acta Chimica Sinica, 2022 , 80(11) : 1463 -1468 . DOI: 10.6023/A22100415

References

[1]
(a) Sun, L.-Q.; Chen, J.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.; Ryan, E.; Xu, C. Bioorg. Med. Chem. Lett. 2004, 14, 1197.
[1]
(b) Grobler, J. A.; Dornadula, G.; Rice, M. R.; Simcoe, A. L.; Hazuda, D. J.; Miller, M. D. J. Biol. Chem. 2007, 282, 8005.
[1]
(c) Boyer, J.; Arnoult, E.; Médebielle, M.; Guillemont, J.; Unge, J.; Jochmans, D. J. J. Med. Chem. 2011, 54, 7974.
[1]
(d) Le-venthal, L.; Brandt, M. R.; Cummons, T. A.; Piesla, M. J.; Rogers, K. E.; Harris, H. A. Eur. J. Pharmacol. 2006, 553, 67.
[1]
(e) Easmon, J.; Purstinger, G.; Thies, K.-S.; Heinisch, G.; Hofmann, J. J. Med. Chem. 2006, 49, 6343.
[1]
(f) Tweeny, R.; Kau, F. S.; Shivapriya, R.; Cheryl, L.; Wojciechowski, J.; Thomas, M. J. Z.; Roberts, J. C.; William, R. S.; Silver, P. A. Cancer Cell. 2003, 4, 463.
[1]
(g) Elrayess, R. A.; Ghareb, N.; Azab, M. M. J. Life Sci. 2013, 10, 1784.
[1]
(h) Bradshaw, T. D.; Westwell, A. D. Med. Chem. 2004, 11, 1241.
[1]
(i) Hu, L.; Kully, M. L.; Boykin, D. W.; Abood, N. Med. Chem. Lett. 2009, 19, 3374.
[1]
(j) Yanai, H.; Taguchi, T. Chem. Commun. 2009, 1034.
[1]
(k) Yu, L.; Zhou, W.; Wang, Z. Bioorg. Med. Chem. Lett. 2011, 21, 1541.
[1]
(l) Scott, J. D.; Williams, R. M. J. Am. Chem. Soc. 2002, 124, 2951.
[2]
(a) Gazzola, S.; Beccalli, E. M.; Bernasconi, A.; Borelli, T.; Broggini, G.; Mazza, A. Eur. J. Org. Chem. 2016, 26, 4534.
[2]
(b) Shang, Y.; He, X.; Hu, J.; Wu, J.; Zhang, M.; Yu, S.; Zhang, Q. Adv. Synth. Catal. 2009, 351, 2709.
[2]
(c) Liu, T.; Zheng, D.; Li, Z.; Wu, J. Adv. Synth. Catal. 2017, 360, 865.
[2]
(d) Wu, J.; Zong, Y.; Zhao, C.; Yan, Q.; Sun, L.; Li, Y.; Zhao, J.; Ge, Y.; Li, Z. Org. Biomol. Chem. 2019, 17, 794.
[2]
(e) Natarajan, P.; Priya; Chuskit, D. RSC Adv. 2021, 11, 15573.
[2]
(f) Chaitanya, M.; Anbarasan, P. Org. Lett. 2018, 20, 1183.
[2]
(g) Lantano, B.; Barata-Vallejo, S.; Postigo, A. Org. Biomol. Chem. 2018, 16, 6718.
[2]
(h) Babra, J. S.; Russell, A. T.; Smith, C. D.; Zhang, Y. Tetrahedron 2018, 74, 5351.
[3]
(a) Das, T. K.; Mondal, S.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2017, 19, 5597.
[3]
(b) Ghosh, A.; Hegde, R. V.; Rode, H. B.; Ambre, R.; Mane, M. V.; Patil, S. A.; Sridhar, B.; Dateer, R. B. Org. Lett. 2021, 23, 8189.
[3]
(c) Peng, X. C.; Feng, P. J. Chin. J. Org. Chem. 2021, 41, 2918. (in Chinese)
[3]
(彭西超, 冯鹏举, 有机化学, 2021, 41, 2918.)
[4]
(a) Bolt, R. R. A.; Leitch, J. A.; Jones, A. C.; Nicholson, W. I.; Browne, D. L. Chem. Soc. Rev. 2022, 51, 4243.
[4]
(b) Zhao, D. B. Chin. J. Org. Chem. 2013, 33, 389. (in Chinese)
[4]
(赵东波, 有机化学, 2013, 33, 389.)
[5]
Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.
[6]
Brzozowski, M.; O’Brien, M.; Ley, S. V. Acc. Chem. Res. 2015, 48, 349.
[7]
Li, W.; Wu, Q.; Xu, G.; Sun, Y.; Huang, C.; Liu, T. Asian J. Org. Chem. 2021, 10, 3370.
[8]
Bermejo-López, A.; Carrasco, S.; Tortajada, P. J.; Kopf, K. P. M.; Sanz-Marco, A.; Hvid, M. S.; Lock, N.; Martín-Matute, B. ACS Sustainable Chem. Eng. 2021, 9, 14405.
Outlines

/