Perovskite Dual-function Passivator: Room Temperature Ionic Liquid Obtained from Mechanochemical Preparation
Received date: 2022-08-30
Online published: 2022-10-26
Supported by
National Natural Science Foundation of China(22075083)
Although room temperature ionic liquids (RTILs) themselves are green solvents, their green synthesis faces great challenges actually. Mechanochemistry is developing as a new discipline with the advantages of solvent-free, green processes without high temperature and pressure. In this work, we obtained 1-methyl-3-benzyl-imidazolium iodide by directly mixing iodobenzenemethane and N-methylimidazole in a planetary ball mill using mechanochemical synthesis, and applied the product to passivate crystal defect energy levels in printable mesoscopic perovskite solar cells. Unlike ordinary thermochemical reactions, the reaction power of mechanochemistry is mechanical energy rather than thermal energy, so the reaction can be completed without high temperature, high pressure and other harsh conditions, and the whole experimental process is green and convenient. After dosage optimization, the short-circuit current density (JSC), fill factor (FF) and photoelectric conversion efficiency (PCE) of the solar cells increase from 16.19 mA•cm‒2, 68.04% and 10.00% to 17.59 mA•cm‒2, 71.89% and 11.47%, respectively. Combining scanning electron microscopy (SEM) images, X-ray diffraction (XRD) tests, photoluminescence (PL) tests, time-resolved fluorescence spectroscopy (TRPL) tests, and X-ray photoelectron spectroscopy (XPS), we demonstrated that, on the one hand, the lone pair of electrons of the nitrogen atom on the imidazole ring has a dispersing effect on the charge of uncoordinated Pb2+ on the surface of the perovskite crystal, and on the other hand, the electrostatic interaction between the large π-bonded electron cloud of the benzene ring and I‒ has an inhibiting effect on the migration of I‒, which in turn constrains the capture of excited state electrons by Pb2+ and iodine vacancies. Thus, we believe that the introduction of the rational ionic liquid 1-methyl-3-benzyl-imidazolium iodide effectively enhances the short-circuit current density (JSC) of the device, which opens a new pathway for the preparation and synthesis of new high-performance passivators.
Wenjun Wu , Yuting Li , Xi Feng , Wenxing Ding . Perovskite Dual-function Passivator: Room Temperature Ionic Liquid Obtained from Mechanochemical Preparation[J]. Acta Chimica Sinica, 2022 , 80(11) : 1469 -1475 . DOI: 10.6023/A22030127
[1] | Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. |
[2] | Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Gr?tzel, M.; Han, L. Nature 2017, 550, 92. |
[3] | Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Gr?tzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics. 2014, 8, 128. |
[4] | Xie, J.-S.; Huang, K.; Yu, X.-G.; Yang, Z.; Xiao, K.; Qiang, Y.-P.; Zhu, X.-D.; Xu, L.-B.; Wang, P.; Cui, C.; Yang, D.-R. ACS Nano 2017, 11, 9176. |
[5] | Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Seok, S. I.; Lee, J.; Seo, J. Nat. Energy 2018, 3, 682. |
[6] | Sahli, F.; Werner, J.; Kamino, B. A.; Br?uninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J. J. D.; Sacchetto, D.; Cattaneo, G.; Despeisse, M.; Boccard, M.; Nicolay, S.; Jeangros, Q.; Niesen, B.; Ballif, C. Nat. Mater. 2018, 17, 820. |
[7] | Rowlands, S. A.; Hall, A. K.; McCormick, P. G.; Street, R.; Hart, R. J.; Ebell, G. F.; Donecker, P. Nature 1994, 367, 223. |
[8] | Fiss, B. G.; Richard, A. J.; Douglas, G.; Kojic, M.; Fri??i?, T.; Moores, A. Chem. Soc. Rev. 2021, 50, 8279. |
[9] | Xu, L. Ph.D. Dissertation, East China University of Science and Technology, Shanghai, 2020. (in Chinese) |
[9] | (徐梁, 博士论文, 华东理工大学, 上海, 2020.) |
[10] | Chen, Y.; Ma, D.; Wang, Z.-Q.; He, J.-S.; Gong, X.-Q.; Wu, W.-J. Adv. Mater. Interfaces 2022, 2200326. |
[11] | Ming, Y.; Hu, Y.; Mei, A.-Y.; Rong, Y.-G.; Han, H.-W. J. Inorg. Mater. 2022, 37, 197. (in Chinese) |
[11] | (明月, 胡玥, 梅安意, 荣耀光, 韩宏伟, 无机材料学报, 2022, 37, 197.) |
[12] | Luo, Y.; Zhu, C.-T.; Ma, S.-P.; Zhu, L.; Guo, X.-Y.; Yang, Y. Chin. J. Phys. 2022, 71, 390. (in Chinese) |
[12] | (罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英, 物理学报, 2022, 71, 390.) |
[13] | Gao, P.-Y.; Fan, X.-Y.; Li, J.-K.; Guo, P.-C.; Huang, L.-Q.; Sun, J.; Zhu, H.; Wang, Y.-X. Mater. Rev. 2022, 36, 17. (in Chinese) |
[13] | (高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香, 材料导报, 2022, 36, 17.) |
/
〈 |
|
〉 |