Review

Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries

  • Xiaolan Xue ,
  • Yang Zhang ,
  • Meiyu Shi ,
  • Tianlin Li ,
  • Tianlong Huang ,
  • Jiqiu Qi ,
  • Fuxiang Wei ,
  • Yanwei Sui ,
  • Zhong Jin
Expand
  • aSchool of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
    bKey Laboratory of Mesoscopic Chemistry of MOE, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2022-09-05

  Online published: 2022-10-27

Supported by

Natural Science Foundation of Jiangsu Province(BK20210518); Natural Science Foundation of Jiangsu Province(BK20221113); Shuangchuang Program of Jiangsu Province(JSSCBS20211233); Fundamental Research Funds for the Central Universities(2021QN1106); Fundamental Research Funds for the Central Universities(020514380266); Fundamental Research Funds for the Central Universities(020514380272); Fundamental Research Funds for the Central Universities(020514380274); National Key Research and Development Program of China(2017YFA0208200); National Natural Science Foundation of China(22022505); National Natural Science Foundation of China(21872069); Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008); Nanjing International Collaboration Research Program(202201007); Nanjing International Collaboration Research Program(2022SX00000955); Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(ZXL2021273)

Abstract

Nonaqueous magnesium secondary batteries have attracted tremendous attention owing to their natural abundance, low cost, high theoretical volumetric specific capacities of 3833 mAh/cm3, and free of dendrite formation. However, the high polarity of Mg2+ ion results in the strong electrostatic interaction between Mg2+ ions and the anions of cathode materials, which makes it difficult to realize reversible insertion and de-insertion of Mg2+ ion in most cathode materials used in lithium ion batteries. At present, the research of cathode materials for magnesium secondary batteries is mainly focused on inorganic compounds. Unfortunately, such cathode materials suffer from problems of working at low current density, slow reaction kinetics, and complicated synthesis process. In comparison, organic electrode materials have been recognized as promising electrode materials for electrochemical energy storage systems because organic materials composed of naturally abundant chemical elements of C, H, O, N, S, etc., can be easily synthesized from renewable resources with low-cost at mild conditions. More importantly, organic materials with chemical diversity and structural flexibility can be purposefully synthesized. What’s more, the capacity, oxidation/reduction potentials, solubility, electron transfer rates, and mechanical properties can be regulated by introducing various groups or heteroatoms. Furthermore, compared to inorganic electrode materials with sluggish kinetics, organic electrode materials usually store ions through ion coordination mechanism, which is not limited by the type and size of ions and can be applied to different energy storage systems such as lithium ion batteries, sodium ion batteries, potassium ion batteries, multivalent-ion batteries, and supercapacitors. Herein, the recent progress of various organic- based materials for nonaqueous magnesium secondary batteries is summarized and the general redox mechanism is presented. Finally, the problems and challenges, resolution strategies and future development directions of organic electrode materials are briefly summarized and discussed.

Cite this article

Xiaolan Xue , Yang Zhang , Meiyu Shi , Tianlin Li , Tianlong Huang , Jiqiu Qi , Fuxiang Wei , Yanwei Sui , Zhong Jin . Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries[J]. Acta Chimica Sinica, 2022 , 80(12) : 1618 -1628 . DOI: 10.6023/A22090385

References

[1]
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.
[2]
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243.
[3]
Melot, B. C.; Tarascon, J. M. Acc. Chem. Res. 2013, 46, 1226.
[4]
Lei, X.; Liang, X.; Yang, R.; Zhang, F.; Wang, C.; Lee, C. S.; Tang, Y. Small 2022, 18, 2200418.
[5]
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6, 2265.
[6]
Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775.
[7]
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, M.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
[8]
Zhang, R.; Yu, X.; Nam, K. W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X.; Matsui, M. Electrochem. Commun. 2012, 23, 110.
[9]
Cheng, Y.; Shao, Y.; Raju, V.; Ji, X.; Mehdi, B. L.; Han, K. S.; Engelhard, M. H.; Li, G.; Browning, N. D.; Mueller, K. T.; Liu, J. Adv. Funct. Mater. 2016, 26, 3446.
[10]
Wang, L.; Asheim, K.; Vullum, P. E.; Svensson, A. M.; Vullum- Bruer, F. Chem. Mater. 2016, 28, 6459.
[11]
Truong, Q. D.; Devaraju, M. K.; Honma, I. J. Power Sources 2017, 361, 195.
[12]
NuLi, Y.; Yang, J.; Li, Y.; Wang, J. Chem. Commun. 2010, 46, 3794.
[13]
Sun, X.; Bonnick, P.; Nazar, L. F. ACS Energy Lett. 2 016, 1, 297.
[14]
Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Adv. Mater. 2012, 23, 640.
[15]
Liu, B.; Luo, T.; Mu, G.; Wang, X.; Chen, D.; Shen, G. ACS Nano 2013, 7, 8051.
[16]
Duffort, V.; Sun, X.; Nazar, L. F. Chem. Commun. 2016, 52, 12458.
[17]
Ding, Y.; Ren, X.; Chen, D.; Wen, F.; Li, T.; Xu, F. ACS Appl. Energy Mater. 2022, 5, 3004.
[18]
Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273.
[19]
Tang, M.; Li, H.; Wang, E.; Wang, C. Chin. Chem. Lett. 2018, 29, 232.
[20]
Dawut, G.; Lu, Y.; Zhao, Q.; Liang, J.; Tao, Z. L.; Chen, J. Acta Phys.-Chim. Sin. 2016, 32, 1593. (in Chinese)
[20]
( 古丽巴哈尔?达吾提, 卢勇, 赵庆, 梁静, 陶占良, 陈军, 物理化学学报, 2016, 32, 1593.)
[21]
McAllister, B. T.; Kyne, L. T.; Schon, T. B.; Seferos, D. S. Joule 2019, 3, 620.
[22]
Qin, K.; Huang, J.; Holguin, K.; Luo, C. Energy Environ. Sci. 2020, 13, 3950.
[23]
Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280.
[24]
Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, 2.
[25]
Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279.
[26]
Shadike, Z.; Tan, S.; Wang, Q. C.; Lin, R.; Hu, E.; Qu, D.; Yang, X. Q. Mater. Horiz. 2021, 8, 471.
[27]
NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. Electrochem. Commun. 2007, 9, 1913.
[28]
NuLi, Y.; Chen, Q.; Wang, W.; Wang, Y.; Yang, J.; Wang, J. Sci. World J. 2014, 2014, 107918.
[29]
Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Chem 2018, 4, 2786.
[30]
Chen, Q.; NuLi, Y.; Guo, W.; Yang, J.; Wang, J.; Guo, Y. Acta Phys.- Chim. Sin. 2013, 29, 2295.
[31]
Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K.; Choi, N. S. ACS Appl. Mater. Interfaces 2014, 6, 4063.
[32]
H?upler, B.; Wild, A.; Schubert, U. S. Adv. Energy Mater. 2015, 5, 1402034.
[33]
Xie, J.; Zhang, Q. Small 2019, 15, 1805061.
[34]
Sano, H.; Senoh, H.; Yao, M.; Sakaebe, H.; Kiyobayashi, T. Chem. Lett. 2012, 41, 1594.
[35]
Senoh, H.; Sakaebe, H.; Sano, H.; Yao, M.; Kuratani, K.; Takeichi, N.; Kiyobayashi, T. J. Electrochem. Soc. 2014, 161, A1315.
[36]
Pan, B.; Zhou, D.; Huang, J.; Zhang, L.; Burrell, A. K.; Vaughey, J. T.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2016, 163, A580.
[37]
Debashis, T.; Viswanatha, H. M.; Harish, M. N. K.; Sampath, S. J. Electrochem. Soc. 2020, 167, 070561.
[38]
Bitenc, J.; Pirnat, K.; Ban?i?, T.; Gaber??ek, M.; Genorio, B.; Randon-Vitanova, A.; Dominko, R. ChemSusChem 2015, 8, 4128.
[39]
Song, Z.; Qian, Y.; Gordin, M. L.; Tang, D.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. Angew. Chem. Int. Ed. 2015, 54, 13947.
[40]
Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z.; Burrell, A. K.; Liao, C. Adv. Energy Mater. 2016, 6, 1600140.
[41]
Bitenc, J.; Pirnat, K.; ?agar, E.; Randon-Vitanova, A.; Dominko, R. J. Power Sources 2019, 430, 90.
[42]
Bitenc, J.; Pirnat, K.; Mali, G.; Novosel, B.; Vitanova, A. R.; Dominko, R. Electrochem. Commun. 2016, 69, 1.
[43]
Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. ACS Nano 2018, 12, 3424.
[44]
Dong, H.; Tutusaus, O.; Liang, Y.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W.; Mohtadi, R.; Yao, Y. Nat. Energy 2020, 5, 1043.
[45]
Rodríguez-Pérez, I. A.; Yuan, Y.; Bommier, C.; Wang, X.; Ma, L.; Leonard, D. P.; Lerner, M. M.; Carter, R. G.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. J. Am. Chem. Soc. 2017, 139, 13031.
[46]
Cui, L.; Zhou, L.; Zhang, K.; Xiong, F.; Tan, S.; Li, M.; An, Q.; Kang, Y. M.; Mai, L. Nano Energy 2019, 65, 103902.
[47]
Yang, H.; Xu, F. ChemPhysChem 2021, 22, 1455.
[48]
Ban?i?, T.; Bitenc, J.; Pirnat, K.; Lautar, A. K.; Grdadolnik, J.; Vitanova, A. R.; Dominko, R. J. Power Sources 2018, 395, 25.
[49]
Fan, X.; Wang, F.; Ji, X.; Wang, R.; Gao, T.; Hou, S.; Chen, J.; Deng, T.; Li, X.; Chen, L.; Luo, C.; Wang, L.; Wang, C. Angew. Chem. Int. Ed. 2018, 57, 7146.
[50]
Wang, Y.; Liu, Z.; Wang, C.; Hu, Y.; Lin, H.; Kong, W.; Ma, J.; Jin, Z. Energy Storage Mater. 2020, 26, 494.
[51]
Dong, H.; Liang, Y.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Joule 2019, 3, 782.
[52]
Ding, Y.; Chen, D.; Ren, X.; Cao, Y.; Xu, F. J. Mater. Chem. A 2022, 10, 14111.
[53]
Cao, Y.; Wang, M.; Wang, H.; Han, C.; Pan, F.; Sun, J. Adv. Energy Mater. 2022, 12, 2200057.
[54]
Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49, 3565.
[55]
Mao, M.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 17820.
[56]
Sun, R.; Hou, S.; Luo, C.; Ji, X.; Wang, L.; Mai, L.; Wang, C. Nano Lett. 2020, 20, 3880.
[57]
Li, S.; Liu, Y.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. Energy Storage Mater. 2022, 48, 439.
Outlines

/