Research Progress of Solar Hydrogen Production Technology under Double Carbon Target
Received date: 2022-08-19
Online published: 2022-11-02
Supported by
National Key Research and Development Program of China(2019YFC1904500); National Natural Science Foundation of China(52270115); National Natural Science Foundation of China(21777080); Science Foundation of China University of Petroleum (Beijing)(2462019QNXZ05); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing)
The achievement of the “double carbon target” requires precise policy guidance and the development of alternative clean energy. In recent years, hydrogen energy has attracted more and more attention due to its rich sources, high heating value, low-carbon, and diverse application scenarios. Among the traditional hydrogen production technologies, fossil fuel hydrogen production technology is the most widely used, but the larger energy consumption and greenhouse gas emission are caused by its hydrogen production reaction process. Photocatalytic water splitting can transfer solar energy to hydrogen, which can store solar energy in the form of chemical energy. This strategy not only can utilize solar energy to generate hydrogen, but also can combine hydrogen with CO2 to produce high-value chemicals. Moreover, this technology can reduce carbon dioxide emissions and realize the comprehensive utilization of hydrocarbon resources. The research progress of photocatalytic (PC) hydrogen production, photoelectrocatalytic (PEC) hydrogen production and photovoltaic electrocatalytic (PV-EC) hydrogen production are reviewed. The basic principles of related technologies are explained, and the key materials in hydrogen production technology are introduced. The related researches of solar to hydrogen (STH) conversion efficiency and material stability are summarized in detail during the development of three hydrogen production technologies. Finally, the key challenges and future development directions are discussed and prospected for the three solar hydrogen production technologies.
Pan An , Qinghui Zhang , Zhuang Yang , Jiaxing Wu , Jiaying Zhang , Yajun Wang , Yuming Li , Guiyuan Jiang . Research Progress of Solar Hydrogen Production Technology under Double Carbon Target[J]. Acta Chimica Sinica, 2022 , 80(12) : 1629 -1642 . DOI: 10.6023/A22080362
[1] | Gao, H. International Petroleum Economics 2021, 29, 1. (in Chinese) |
[1] | ( 高虎, 国际石油经济, 2021, 29, 1.) |
[2] | Gong, X. Beijing Planning Review 2022, (01), 67. (in Chinese) |
[2] | ( 龚翔, 北京规划建设, 2022, (01), 67.) |
[3] | Zhou, Y. M. China Development Observation 2021, (Z1), 56. (in Chinese) |
[3] | ( 周亚敏, 中国发展观察, 2021, (Z1), 56.) |
[4] | Zhu, Y. F.; Yao, W. Q.; Zong, R. L. Chinese J. Anal. Chem. 2015, 43, 393. (in Chinese) |
[4] | ( 朱永法, 姚文清, 宗瑞隆, 分析化学 2015, 43, 393.) |
[5] | Li, F. H.; Liu, Y. H.; Mao, B. D.; Li, L. H.; Huang, H.; Zhang, D. Q.; Dong, W. X.; Kang, Z. H.; Shi, W. D. Appl. Catal. B 2021, 292, 120154. |
[6] | Zhou, Z. Y..; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Appl. Catal. B 2020, 286, 119868. |
[7] | Photovoltaic hydrogen production + coupled coal production million tons of methanol zero carbon emission project signed a cooperation agreement, Coal Chemical Industry 2020, 48, 44. (in Chinese) |
[7] | (光伏制氢+耦合煤制百万吨甲醇零碳排放项目签署合作协议,煤化工, 2020, 48, 44.) |
[8] | Yang, Z.; Gao, X. X.; Jiang, X. J. Metal Mine 2017, (03), 167. (in Chinese) |
[8] | ( 杨状, 高星星, 姜效军, 金属矿山 2017, (03), 167.) |
[9] | Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Jiang, X. J.; Wang, J. Metal Mine 2017, (07), 173. (in Chinese) |
[9] | ( 杨状, 高星星, 赵通林, 李洋, 姜效军, 王舰, 金属矿山 2017, (07), 173.) |
[10] | Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Wang, J.; Tao, D. P.; Niu, W. J. Journal of Liaoning University of Science and Technology 2017, 40, 368. (in Chinese) |
[10] | ( 杨状, 高星星, 赵通林, 李洋, 王舰, 陶东平, 牛文杰, 辽宁科技大学学报, 2017, 40, 368.) |
[11] | Li, C. Solar Energy Conversion Science and Technology, Science Press, Beijing, 2020. (in Chinese) |
[11] | ( 李灿, 太阳能转化科学与技术, 科学出版社, 北京, 2020.) |
[12] | Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534. |
[13] | Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851. |
[14] | Osterloh, F. E. Chem. Mater. 2008, 20, 35. |
[15] | Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Mushtaq, A.; Sharma, L.; Halder, A.; Pal, S. K.; Shankar, M. V.; Krishnan, V. ACS Appl. Energy Mater. 2020, 12, 12134. |
[16] | Wang, J.; Yang, Z.; Yao, W. Q.; Gao, X. X.; Tao, D. P. Appl. Catal. B 2018, 238, 629. |
[17] | Abdul Nasir, J.; Islama, N.; Rehmana, Z.; Butlerc, I. S.; Munird, A.; Nishina, Y. Mater. Chem. Phys. 2021, 259, 124140. |
[18] | Fujishima, A.; Honda, K. Nature 1972, 238, 37. |
[19] | Xiao, Y. Q. Ph.D. Dissertation, University of Electronic Science and Technology of China, Chengdu, 2021. (in Chinese) |
[19] | ( 肖业权, 博士论文, 电子科技大学, 成都, 2021.) |
[20] | Ganguly, P.; Moussab Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. ACS Energy Lett. 2019, 4, 1687. |
[21] | Zhang, Y. C.; Nisha, A.; Pan, L.; Zhang, X. W.; Zou, J. J. Adv. Sci. 2019, 1900053. |
[22] | Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082. |
[23] | Wang, Y. J.; Chen, J.; Liu, L. M.; Xi, X. X.; Li, Y. M.; Geng, Z. L.; Jiang, G. Y.; Zhao, Z. Nanoscale 2019, 11, 1618. |
[24] | Wang, Y. J.; Zhang, Y. N.; Jiang, Z. Q.; Jiang, G. Y.; Zhao, Z.; Wu, Q. H.; Liu, Y.; Xu, Q.; Duan, A. j.; Xu, C. M. Appl. Catal. B 2016, 185, 307. |
[25] | Cheng, H. F.; Huang, B. B.; Dai, Y. Nanoscale 2014, 6, 2009. |
[26] | Shi, M., Li, G.N.; Li, J. M.; Jin, X.; Tao, X. P.; Zeng, B.; Pidko, E. A.; Li, R. G.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 6590. |
[27] | Tang, Z. K.; Yin, W. J.; Le, Z.; Wen, B.; Zhang, D. Y.; Liu, L. M.; Lau, W. M. Sci. Rep. 2016, 6, 32764. |
[28] | Mi, Y.; Wen, L. Y.; Wang, Z. J.; Cao, D. W.; Xu, R.; Fang, Y. G.; Yilong Zhou, Y. L.; Lei, Y. Nano Energy 2016, 30, 109. |
[29] | Fang, W. L.; Yao, S.; Wang, L.; Li, C. H. J. Alloys Compd. 2021, 891, 162081. |
[30] | Di, J.; Xia, J. X.; Chisholm, F. M.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X.; Xiong, J.; Yang, S. Z.; Li, H. M.; Liu, Z.; Dai, S. Adv. Mater. 2019, 31, 1807576. |
[31] | Lin, H. Y.; Lee, T. H.; Sie, C. Y. Int. J. Hydrogen Energy. 2008, 33, 4055. |
[32] | Zhang, G. K.; Zou, X.; Gong, J.; He, F. S.; Zhang, H.; Zhang, Q.; Liu, Y.; Yang, X.; Hu, B. J. Alloys Compd. 2006, 425, 76. |
[33] | Zhang, G. K.; He, F. S.; Zou, X.; Gong, J.; H. B.; Zhang, H.; Zhang, Q.; Liu, Y. J. Alloys Compd. 2007, 427, 82. |
[34] | Unal, U.; Matsumoto, Y.; Tamoto, N.; Koinuma, M.; Machida, M.; Izawa, K. J. Solid State Chem. 2006, 179, 33. |
[35] | Tian, M. K.; Shangguan, W. F. J. Inorg. Mater. 2011, 26, 513. (in Chinese) |
[35] | ( 田蒙奎, 上官文峰, 无机材料学报, 2011, 26, 513.) |
[36] | Zou, Z. G.; Ye, J. H.; Arakawa, H. Chem. Phys. Lett. 2000, 332, 271. |
[37] | Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082. |
[38] | Song, K.; Yang, J.; Jiang, P. F.; Gao, W. L.; Cong, R. H.; Yang, T. Eur. J. Inorg.Chem. 2015, 5786. |
[39] | Chiou, Y. C.; Kumar, U.; Wu, J. C. S. Appl. Catal., A 2009, 357, 73. |
[40] | Ma, Z. J.; Wu, K. C.; Sun, B. Z.; He, C. J. Mater. Chem. A 2015, 3, 8466. |
[41] | Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shan, Z. C.; Shi, J. L. Dyes Pigm. 2008, 78, 39. |
[42] | Lin, X. P.; Huang, F. Q.; Wang, W. D.; Zhang, K. L. Appl. Catal., A 2006, 307, 257. |
[43] | Kako, T.; Kikugawa, N.; Ye, J. H. Catal. Today 2008, 131, 197. |
[44] | Hara, Y.; Takashima, T.; Kobayashi, R.; Abeyrathna, S.; Ohtani, B.; Irie, H. Appl. Catal. B 2017, 209, 663. |
[45] | Maeda, K.; Lu, D. L.; Domen, K. Chem. Eur. J. 2013, 19, 4986. |
[46] | Zhang, L.; Song, Y.; Feng, J. Y.; Fang, T.; Zhong, Y. J.; Li, Z. S.; Zou, Z. G. Int. J. Hydrogen Energy. 2014, 39, 7697. |
[47] | Zhong, Y. J.; Li, Z. S.; Zhao, X.; Fang, T.; Huang, H. T.; Qian, Q. F.; Chang, X. F.; Wang, P.; Yan, S. C.; Yu, Z. T.; Zou, Z. G. Adv. Funct. Mater. 2016, 26, 7156. |
[48] | Higashi, M.; Abe, R.; Teramura, K.; Takata, T.; Ohtani, B.; Domen, K. Chem. Phys. Lett. 2008, 452, 120. |
[49] | Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591. |
[50] | Liu, M. Y.; You, W. S.; Lei, Z. B.; Takata, T.; Domen, K. ; Li, C. Chin. J. Catal. 2006, 27, 556. |
[51] | Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Chem. Commun. 2014, 50, 15521. |
[52] | Patnaik, S.; Martha, S.; Parida, K. M. RSC Adv. 2016, 6, 46929 |
[53] | Wang, J.; Yang, Z.; Gao, X. X.; Yao, W. Q.; Wei, W. Q.; Chen, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2017, 217, 169. |
[54] | Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Chin. J. Catal. 2020, 41, 114. |
[55] | Wang, D.K.; Zeng, H.; Xiong, X.; Wu, M. F.; Xia, M. R.; Xie, M. L.; Zou, J. P.; Luo, S. L. Sci. Bull. 2020, 65, 113. |
[56] | Zhang, H.; Wang, L.; Xu, X. X. Journal of Functional Polymers. 2019, 32, 140. (in Chinese) |
[56] | ( 张杭, 王磊, 徐航勋, 功能高分子学报, 2019, 32, 140.) |
[57] | Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109 |
[58] | Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature. 2001, 414, 625. |
[59] | Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem., nt. Ed. 2015, 54, 2955. |
[60] | Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. |
[61] | Wang, L.; Wan, Y. Y.; Ding, Y. J.; Wu, S. K.; Zhang, Y.; Zhang, X. L.; Zhang, G. Q.; Xiong, Y. J.; Wu, X. J.; Yang, J. L.; Xu, H. X. Adv. Mater. 2017, 29, 1702428. |
[62] | Jing, D. W.; L. Guo, L. J. J. Phys. Chem. B 2006, 110, 11139. |
[63] | Zhu, C.; Liu, C. G.; Zhou, Y. J.; Fu, Y. J.; Guo, S. J.; Li, H.; Zhao, S. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Appl. Catal. B 2017, 216, 114. |
[64] | Ye, H. F.; Shi, R.; Yang, X.; Fu, W. F.; Chen, Y. Appl. Catal. B 2018, 233, 70. |
[65] | Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Adv. Mater. 2018, 30, 1705941. |
[66] | Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; J?ckel, F.; Feldmann, J.; Würthner, F.; Stolarczyk, J. K. Nat. Energy 2018, 3, 862. |
[67] | Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W.; Liu, Q. H.; Yao, T.; Wei, S. Q. Angew. Chem., Int. Ed. 2017, 56, 9312. |
[68] | Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Nat. Catal. 2020, 3, 649. |
[69] | Li, Y. R.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Zhang, Z.; Meng, F. Q.; Zhang, Q. H.; Huangfu, Y. L.; Zhao, D. M.; Gu, L.; Shen, S. H. Chem. Sci. 2021, 12, 3633. |
[70] | Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Nature 2021, 598, 304. |
[71] | Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. |
[72] | Qi, Y.; Zhang, F. X. Acta Chim. Sinica 2022, 80, 827. (in Chinese) |
[72] | ( 祁育, 章福祥, 化学学报 2022, 80, 827.) |
[73] | Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Chem. Rev. 2014, 114, 9987. |
[74] | Wang, Y. J.; Bai, W. K.; Wang, H. Q.; Jiang, Y.; Han, S. L.; Sun, H. Q.; Li, Y. M.; Jiang, G. Y.; Zhao, Z.; Huan, Q. Dalton Trans. 2017, 46, 10734. |
[75] | Wang, Y. J.; Bai, W. K.; Han, S. L.; Wang, H. Q.; Wu, Q. H.; Chen, J.; Jiang, G. Y.; Zhao, Z.; Xu, C. M.; Huan, Q. Curr. Catal. 2017, 6, 50. |
[76] | Gan, J. Y.; Lu, X. H.; Tong, Y. X. Nanoscale 2014, 6, 7142. |
[77] | Liu, X.; Wang, F. Y.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7894. |
[78] | McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347. |
[79] | Sarnowska, M.; Bienkowski, K.; Barczuk, P. J.; Solarska, R.; Augustynski, J. Adv. Energy Mater. 2016, 6, 1600526. |
[80] | Sfaelou, S.; Pop, L. C.; Monfort, O.; Dracopoulos, V.; Lianos, P. Int. J. Hydrogen Energy 2016, 41, 5902. |
[81] | Han, L.; Dong, S. J.; Wang, E. K. Adv. Mater. 2016, 28, 9266. |
[82] | Kwong, W. L.; Lee, C. C.; Messinger, J. J. Phys. Chem. C 2016, 120, 10941. |
[83] | Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Commun. 2003, 290, 2908. |
[84] | Qui?onero, J.; Villarreal, T. L.; Gómez, R. Appl. Catal. B 2016, 194, 141. |
[85] | Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Energy Environ. Sci. 2015, 8, 731. |
[86] | Antony, R. P.; Bassi, P. S.; Abdi, F. F.; Chiam, S. Y.; Ren, Y.; Barber, J.; Loo, J. S. C.; Wong, L. H. Electrochim. Acta 2016, 211, 173. |
[87] | Bai, J.; Wang, R.; Li, Y. P.; Tang, Y. Y.; Zeng, Q. Y.; Xia, L. G.; Li, X. J.; Li, J. H.; Li, C. L.; Zhou, B. A. J. Hazard. Mater. 2016, 311, 51. |
[88] | Xia, L. G.; Bai, J.; Li, J. H.; Zeng, Q. Y.; Li, X. J.; Zhou, B. X. Appl. Catal. B 2016, 183, 224. |
[89] | Ayoung, B.; Choi, W.; Park, H. Appl. Catal. B 2011, 110, 207. |
[90] | Warren, S. C.; Vo?tchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Gr?tzel, M. Nat. Mater. 2013, 12, 842. |
[91] | Tilley, S. D.; Cornuz, M.; Sivula, K.; Gr?tzel, M. Angew. Chem., Int. Ed. 2010, 49, 6405. |
[92] | Wang, L.; Lee, C. Y.; Mazare, A.; Lee, K.; Müller, J.; Spiecker, E.; Schmuki, P. Chem. Eur. J. 2014, 20, 77. |
[93] | LaTempa, T. J.; Feng, X. J.; Maggie Paulose, M.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 16293. |
[94] | Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048. |
[95] | Wu, L. Z.; Zhang, T. R. Sci. Bull. 2021, 66, 651. |
[96] | Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Tsutomu Minegishi, T.; Jun Kubota, J.; Domen, K. Adv. Mater. 2012, 25, 125. |
[97] | Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; lan, D. ; Sharp, I. D.; Domen, K.; Li, Y. B. Nat. Catal. 2020, 3, 932. |
[98] | Zheng, J. Y.; Zhou, H. J.; D: Zou, Y. Q.; Wang, R. L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Energy Environ. Sci. 2019, 12, 8. |
[99] | Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. ACS Nano 2013, 7, 1709. |
[100] | Yang, W.; Moon, J. J. Mater. Chem. A 2019, 7, 20467. |
[101] | Wang, K.; Huang, D. W.; Yu, L.; Feng, K.; Li, L. T.; Harada, T.; Ikeda, S. ; Jiang, F. ACS Catal. 2019, 9, 3090. |
[102] | Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. Appl. Phys. Express. 2010, 3, 101202. |
[103] | Paracchino, A.; Brauer, J. C.; Moser, J. E.; Thimsen, E.; Gr?tzel, M. J. Phys. Chem. C 2012, 116, 7341. |
[104] | Hacialioglu, S.; Meng, F.; Jin, S. Chem. Commun. 2012, 48, 1174. |
[105] | Gerischer, H. J. Electroanal. Chem. 1977, 82, 133. |
[106] | Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Gratzel, M. Energy Environ. Sci. 2012, 5, 8673. |
[107] | Pan, L. F.; Kim, J. H.; Mayer, M. T.; Son, M.-K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J. S.; Gr?tzel, M. Nat. Catal. 2018, 1, 412. |
[108] | Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861. |
[109] | Kim, J.; Yang, W.; Oh, Y.; Lee, H.; Lee, S.; Shin, H.; Kim, J.; Moon, J. J. Mater. Chem. A 2017, 5, 2180. |
[110] | Tang, R.; Wang, X.; Lian, W.; Huang, J.; Wei, Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang, S.; Xing, G.; Chen, S.; Zhu, C.; Hao, X. J.; Green, M. A.; Chen, T. Nat. Energy. 2020, 5, 587. |
[111] | Zhou, Y.; Leng, M. Y.; Xia, Z.; Zhong, J.; Song, H. B.; Liu, X. S.; Yang, B.; Zhang, J. P.; Chen, J.; Zhou, K. H.; Han, J. B.; Cheng, Y. B.; Tang, J. Adv. Energy Mater. 2014, 4, 1301846. |
[112] | Guijarro, N.; Lutz, T.; Lana-Villarreal, T.; O'Mahony, F.; Gomez, R.; Haque, S. A. J. Phys. Chem. Lett. 2012, 3, 1351. |
[113] | Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J. W.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861. |
[114] | Tan, J. W.; Yang, W.; Lee, H.; Park, J.; Kim, K.; Hutter, O. S.; Phillips, L. J.;Shim, S.; Yun, J.; Park, Y.;Lee, J.; Major, J. D.; Moon, J. Appl. Catal. B 2021, 286, 119890. |
[115] | Zhou, H. P.; Feng, M. L.; Song, K. N.; Liao, B.; Wang, Y. C.; Liu, R. C.; Gong, X. N.; Zhang, D. K.; Cao, L. F.; Chen, S. J. Nanoscale 2019, 11, 22871. |
[116] | Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. |
[117] | Hsueh, H. C.; Vass, H.; Clark, S. J.; Ackland.; Crain, J. Phys. Rev. B 1995, 51, 16750. |
[118] | Wang, K.; Li, Y.; Li, L.; Wang, C.; Fang, Y.; Zhao, W.; Cai, H.; Sun, F.; Jiang, F. Appl. Catal. B 2021, 297, 120437. |
[119] | Yang, W.; Moon, J. ChemSusChem 2019, 12, 1889. |
[120] | Rovelli, L.; Tilley, S. D.; Sivula, K. ACS Appl. Mater. Interfaces 2013, 5, 8018. |
[121] | Jiang, F. ;, Gunawan; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S. J. Am. Chem. Soc. 2015, 137, 13691. |
[122] | Tay, Y. F.; Kaneko, H.; Chiam, S. Y.; Lie, S.; Zheng, Q. S.; Wu, B.; Hadke, S. S.; Su, Z. H.; Bassi, P. S.; Bishop, D.; Sum, T. C.; Minegishi, T.; Barber, J.; Domen, K.; Wong, L. H. Joule 2018, 2, 537. |
[123] | Feng, K.; Huang, D. W.; Li, L. T.; Wang, K.; Li, J. B.; Harada, T., Ikeda, S.; Jiang, F. Appl. Catal. B 2020, 268, 118438. |
[124] | Jiang, F.; Li, S. T.; Ozaki, C.; Harada, T.; Ikeda, S. Sol. RRL. 2018, 2, 1700205. |
[125] | Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Energy Environ. Sci. 2016, 9, 1327. |
[126] | Victoria, M.; Haegel, N.; Peters, I. M.; Sinton, R.; J?ger-Waldau, A.; del Ca?izo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; Komoto, K.; Smets, A. Joule 2021, 5, 1041. |
[127] | Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307. |
[128] | Liu, J. Y.; Zhang, H.; Lei, M. J.; Xue, Y. Z. Renewable Energy 2014, 32, 1603. (in Chinese) |
[128] | ( 刘金亚, 张华, 雷明镜, 薛演振, 可再生能源 2014, 32, 1603.) |
[129] | Lin, J. Y.; Zhu, L. N.; Zhu, L. Y. Contemporary Chemical Industry 2021, 50, 2429. (in Chinese) |
[129] | ( 林佳怡, 朱丽娜, 朱凌岳, 当代化工 2021, 50, 2429.) |
[130] | Lewis, N. S. Science 2016, 351, aad1920. |
[131] | Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 16. |
[132] | Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. |
[133] | Khaselev, O.; Turner, J. A. Science 1998, 280, 425. |
[134] | Chatterjee, P.; Ambati, M. S. K.; Chakraborty, A. K.; Chakrabortty, S.; Biring, S.; Ramakrishna, S.; Wong, T. K. S.; Kumar, A.; Lawaniya, R.; Dalapati, G. K. Energy Convers. Manage. 2022, 261, 115648. |
[135] | Bonke, S. A.; Wiechen, M.; MacFarlane, D. R.; Spiccia, L. Energy Environ. Sci. 2015, 8, 2791. |
[136] | Sapountzi, F. M.; Gracia, J. M.; Weststrate, C. J.; Fredriksson, H. O. A.; Niemantsverdriet, J. W. Energy Combust. Sci. 2017, 58, 1. |
[137] | Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Energy Environ. Sci. 2015, 8, 2811. |
[138] | Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424. |
[139] | Zhang, K.; Ma, M.; Li, P.; Wang, D. H.; Park, J. H. Adv. Energy. Mater. 2016, 6, 1600602. |
[140] | Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Chem. Soc. Rev. 2017, 46, 4645. |
[141] | McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347. |
[142] | Xu, B. M. Democracy and Science 2017, (05), 23. (in Chinese) |
[142] | ( 徐保民, 民主与科学 2017, (05), 23.) |
[143] | Welter, K.; Becker, J. P.; Finger, F.; Jaegermann, W.; Smirnov, V. Energy Fuels 2021, 35, 839. |
[144] | Finger, F.; Welter, K.; Urbain,F.; Smirnov, V.; Kaiser, B.; Jaegermann, W. Z. Phys. Chem. 2020, 234, 1055. |
[145] | Urbain, F.; Smirnov, V.; Becker, J. P.; Rau, U.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Finger, F. Sol. Energy Mater. Sol. Cells 2015, 140, 275. |
[146] | Xiao, X.; Liu, S. S.; Huang, D. K.; Lv, X. W.; Li, M.; Jiang, X. X.; Tao, L. M.; Yu, Z. H.; Shao, Y.; Wang, M. K.; Shen, Y. ChemSusChem 2019, 12, 434. |
[147] | Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Gr?tzel, M. Science 2014, 345, 1593. |
[148] | Huang, H. Engineering Research Engineering from an Interdisciplinary Perspective. 2017, 9, 547. (in Chinese) |
[148] | ( 黄辉, 工程研究-跨学科视野中的工程, 2017, 9, 547.) |
[149] | Li, R. G. Chin. J. Catal. 2017, 38, 5. |
[150] | Wang, Z. L.; Wang, L. Z. Sci. China Mater. 2018, 61, 806. |
[151] | Wu, Z.; Sun, L.; Lin, C. J. Electrochemistry 2019, 25, 529. (in Chinese) |
[151] | ( 吴芝, 孙岚, 林昌健, |
[152] | Yao, T. T.; An, X. R.; Han, H. X.; Chen, J. Q-J.; Li, C. Adv. Energy Mater. 2018, 8, 1800210. |
[153] | Saraswat, S. K.; Rodene, D. D.; Gupta, R. B. Renewable Sustainable Energy Rev. 2018, 89, 228. |
[154] | Stier, W.; Prezhdo, O. V. J. Mol. Struct.: THEOCHEM. 2003, 630, 33. |
[155] | Sang, L. X.; Zhang, Y. D.; Wang, J.; Liu, Z. L. Journal of Beijing University of Technology 2016, 42, 1082. (in Chinese) |
[155] | ( 桑丽霞, 张钰栋, 王军, 刘中良, 北京工业大学学报, 2016, 42, 1082.) |
[156] | Yang, J.; Sun, H. R.; Zhang, W. S.; Zhang, D. H.; Hu, Y.; Zhang, W.; Guo, Y. Q. Power Station Systems Engineering. 2022, 38, 79. (in Chinese) |
[156] | ( 杨锦, 孙浩然, 张文帅, 张定海, 胡洋, 张伟, 郭宇强, 电站系统工程, 2022, 38, 79.) |
/
〈 |
|
〉 |