Iron-based Metal-organic gel-derived Ferric oxide Nanosheets for Photo-Fenton Degradation of Rhodamine B
Received date: 2022-07-13
Online published: 2022-11-04
Supported by
National Natural Science Foundation of China(21874109)
Photocatalysts play an important role in industrial wastewater treatment. So far, the photocatalysts of photo- Fenton degradation of water pollutants include metal-organic frameworks, two-dimensional layered hydroxides, and transition metal oxides. Among them, transition metal oxides have become a research hotspot because of their easy availability of metal ions, stability and non-toxicity during degradation. In particular, ferric oxide (Fe2O3) has the advantages of wide visible light absorption range, good optical response and high thermodynamic stability, which is considered to be a promising semiconductor photocatalyst. Herein, in this work, Fe2O3 of two morphologies, flakes (namely 300-Fe2O3 and 400-Fe2O3) and spheres (namely 500-Fe2O3 and 600-Fe2O3) were obtained by calcinating sheet-like iron-based metal-organic gel (Fe-MOG) synthesized with Fe3+ and 1,10-phenanthroline-2,9-dicarboxylic acid in one step at room temperature, and were used for photo-Fenton degradation of rhodamine B (Rh B). The crystal structure and optoelectronic properties of the as-prepared Fe2O3 were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy elemental mapping (EDS), the UV-Vis diffuse reflectance spectra (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). Among them, 400-Fe2O3 with carbon skeleton structure exhibited excellent electron transport performance and high photogenerated charge separation efficiency, endowing it with remarkable catalytic activity. In addition, the existence of oxygen vacancy in 400-Fe2O3 promoted the formation of Fe2+, which was the key factor to enhance the photo-Fenton activity. 400-Fe2O3 could photocatalytically degrade 97.5% Rh B within 60 min under neutral conditions, and the degradation efficiency was retained 85.3% after five consecutive cycles. Under visible light irradiation, a part of the photogenic electron (e‒) generated by 400-Fe2O3 reacted with O2 to generate superoxide anion radical (•O2‒), the other part of e‒ reduced Fe3+ to Fe2+ in situ. Subsequently, Fe2+ can catalyze the decomposition of H2O2 into hydroxyl radicals (•OH), and participated in the photodegradation of Rh B together with •O2‒. This work provides a new idea for the development and design of semiconductor photocatalysts with excellent catalytic activity.
Key words: metal-organic gel; ferric oxide; carbon skeleton; photo-Fenton; rhodamine B
Wan Guo , Congyi Hu , Shujun Zhen , Chengzhi Huang , Yuanfang Li . Iron-based Metal-organic gel-derived Ferric oxide Nanosheets for Photo-Fenton Degradation of Rhodamine B[J]. Acta Chimica Sinica, 2022 , 80(12) : 1583 -1591 . DOI: 10.6023/A22070304
[1] | Xie, M.; Dai, F.; Li, J.; Dang, X.; Guo, J.; Lv, W.; Zhang, Z.; Lu, X. Angew. Chem. Int. Ed. 2021, 60, 14370. |
[2] | Zhao, J. J.; Zhang, Z. Z.; Chen, X. L.; Wang, B.; Deng, J. Y.; Zhang, D. Q.; Li, H. X. Acta Chim. Sinica 2020, 78, 961. (in Chinese) |
[2] | ( 赵晶晶, 张正中, 陈小浪, 王蓓, 邓近远, 张蝶青, 李和兴, 化学学报 2020, 78, 961.) |
[3] | Wang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S.-P.; Wu, W. D.; Wu, Z. J. Mater. Chem. A 2020, 8, 15513. |
[4] | Cheng, M.; Lai, C.; Liu, Y.; Zeng, G.; Huang, D.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C.; Xiong, W. Coord. Chem. Rev. 2018, 368, 80. |
[5] | Mesquita, A. M.; Guimar?es, I. R.; Castro, G. M. M. d.; Gon?alves, M. A.; Ramalho, T. C.; Guerreiro, M. C. Appl. Catal. B: Environ. 2016, 192, 286. |
[6] | Bui, V. K. H.; Park, D.; Pham, T. N.; An, Y.; Choi, J. S.; Lee, H. U.; Kwon, O. H.; Moon, J. Y.; Kim, K. T.; Lee, Y. C. Sci. Rep. 2019, 9, 11855. |
[7] | Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 153. (in Chinese) |
[7] | ( 马亚丽, 刘茹雪, 孟双艳, 牛力同, 杨志旺, 雷自强, 化学学报 2019, 77, 153.) |
[8] | Sahoo, D. P.; Rath, D.; Nanda, B.; Parida, K. M. RSC Adv. 2015, 5, 83707. |
[9] | Yang, F.; Zhou, L.; Dong, X.; Zhang, W.; Gao, S.; Wang, X.; Li, L.; Yu, C.; Wang, Q.; Yuan, A.; Chen, J. ACS Appl. Mater. Interfaces 2021, 13, 19803. |
[10] | Huang, X.; Chen, Y.; Walter, E.; Zong, M.; Wang, Y.; Zhang, X.; Qafoku, O.; Wang, Z.; Rosso, K. M. Environ. Sci. Technol. 2019, 53, 10197. |
[11] | Sun, J.; Xia, W.; Zheng, Q.; Zeng, X.; Liu, W.; Liu, G.; Wang, P. ACS Omega 2020, 5, 12339. |
[12] | Wang, T.; Ge, T.; Zhang, Y. Colloid Interface Sci. Commun. 2021, 44, 100504. |
[13] | Niu, Y.; Yuan, Y.; Zhang, Q.; Chang, F.; Yang, L.; Chen, Z.; Bai, Z. Nano Energy 2021, 82, 105699. |
[14] | Liu, H.; Li, J. Z.; Li, P.; Zhang, G. Z.; Xu, X.; Zhang, H.; Qiu, L. F.; Qi, H.; Duo, S. W. Acta Chim. Sinica 2021, 79, 1293. (in Chinese) |
[14] | ( 刘欢, 李京哲, 李平, 张广智, 徐迅, 张豪, 邱灵芳, 齐晖, 多树旺, 化学学报 2021, 79, 1293.) |
[15] | Popov, N.; Risti?, M.; Bo?kovi?, M.; Perovi?, M.; Musi?, S.; Stankovi?, D.; Krehula, S. J. Phys. Chem. Solids 2022, 161, 110372. |
[16] | Zhang, Y.; Su, Y.; Wang, Y.; He, J.; McPherson, G. L.; John, V. T. RSC Adv. 2017, 7, 39049. |
[17] | Xu, W.; Xue, W.; Huang, H.; Wang, J.; Zhong, C.; Mei, D. Appl. Catal. B: Environ. 2021, 291, 120129. |
[18] | You, D.; Shi, H.; Xi, Y.; Shao, P.; Yang, L.; Yu, K.; Han, K.; Luo, X. Chem. Eng. J. 2020, 400, 125359. |
[19] | Wang, H.; Chen, B. H.; Liu, D. J. Adv. Mater. 2021, 33, 2008023. |
[20] | Cao, Z.; Jiang, Z.; Cao, L.; Wang, Y.; Feng, C.; Huang, C.; Li, Y. Talanta 2021, 221, 121616. |
[21] | Wu, Q.; He, L.; Jiang, Z. W.; Li, Y.; Cao, Z. M.; Huang, C. Z.; Li, Y. F. Biosens. Bioelectron. 2019, 145, 111704. |
[22] | Wang, H.; Cheng, X.; Yin, F.; Chen, B.; Fan, T.; He, X. Electrochim. Acta 2017, 232, 114. |
[23] | Liu, S. T.; Ji, H. F.; Pan, G. F. Chinese Ceramics 2021, 57, 53. (in Chinese) |
[23] | ( 刘书亭, 计海峰, 潘高峰, 中国陶瓷 2021, 57, 53.) |
[24] | Yang, D. H.; Kong, L.; Zhong, M.; Zhu, J.; Bu, X. H. Small 2019, 15, 1804058. |
[25] | Yang, C. P.; Wu, Q.; Jiang, Z. W.; Wang, X.; Huang, C. Z.; Li, Y. F. Talanta 2021, 228, 122261. |
[26] | Zhao, Z.; Zhu, Z.; Bao, X.; Wang, F.; Li, S.; Liu, S.; Yang, Y. ACS Appl. Mater. Interfaces 2021, 13, 9820. |
[27] | Xu, Z.; Huang, C.; Wang, L.; Pan, X.; Qin, L.; Guo, X.; Zhang, G. Ind. Eng. Chem. Res. 2015, 54, 4593. |
[28] | Jain, S.; Shah, J.; Negi, N. S.; Sharma, C.; Kotnala, R. K. Int. J. Energy Res. 2019, 43, 4743. |
[29] | Wei, T. R.; Zhang, S. S.; Liu, Q.; Qiu, Y.; Luo, J.; Liu, X. J. Acta Phys.-Chim. Sin. 2023, 39, 2207026. (in Chinese) |
[29] | ( 韦天然, 张书胜, 刘倩, 邱园, 罗俊, 刘熙俊, 物理化学学报, 2023, 39, 2207026.) |
[30] | He, L.; Peng, Z. W.; Jiang, Z. W.; Tang, X. Q.; Huang, C. Z.; Li, Y. F. ACS Appl. Mater. Interfaces 2017, 9, 31834. |
[31] | Shijina, K.; Illathvalappil, R.; Sumitha, N. S.; Sailaja, G. S.; Kurungot, S.; Nair, B. N.; Peer Mohamed, A.; Anilkumar, G. M.; Yamaguchi, T.; Hareesh, U. S. New J. Chem. 2018, 42, 18690. |
[32] | Xiao, F.; Wang, F.; Fu, X.; Zheng, Y. J. Mater. Chem. 2012, 22, 2868. |
[33] | Ouyang, J.; Zhao, Z.; Suib, S. L.; Yang, H. J. Colloid Interface Sci. 2019, 539, 135. |
[34] | Yang, T.; Yu, D.; Petru, M. Appl. Catal. B: Environ. 2021, 286, 119859. |
[35] | Zhang, C.; Liu, S.; Chen, T.; Li, Z.; Hao, J. Chem. Commun. 2019, 55, 7370. |
[36] | Wei, W.; Wei, Z.; Li, R.; Li, Z.; Shi, R.; Ouyang, S.; Qi, Y.; Philips, D. L.; Yuan, H. Nat. Commun. 2022, 13, 3199. |
[37] | He, L.; Ni, Q.; Mu, J.; Fan, W.; Liu, L.; Wang, Z.; Li, L.; Tang, W.; Liu, Y.; Cheng, Y.; Tang, L.; Yang, Z.; Liu, Y.; Zou, J.; Yang, W.; Jacobson, O.; Zhang, F.; Huang, P.; Chen, X. J. Am. Chem. Soc. 2020, 142, 6822. |
[38] | Mimouni, I.; Bouziani, A.; Naciri, Y.; Boujnah, M.; El Belghiti, M. A.; El Azzouzi, M. Environ. Sci. Pollut. Res. Int. 2022, 29, 7984. |
[39] | Kim, C.; Chae, S.; Park, Y.; Choi, W. ACS EST Engg. 2022, 2, 232. |
[40] | Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Chem. Eng. J. 2020, 379, 122264. |
[41] | Zhou, S.; Wang, X.; Zhao, P.; Zheng, J.; Yang, M.; Huo, D.; Hou, C. Mikrochim. Acta 2021, 188, 383. |
[42] | Liang, Q.; Yan, X.; Li, Z.; Wu, Z.; Shi, H.; Huang, H.; Kang, Z. J. Mater. Chem. A 2022, 10, 4279. |
[43] | Zhang, Y.; Sun, A.; Xiong, M.; Macharia, D. K.; Liu, J.; Chen, Z.; Li, M.; Zhang, L. Chem. Eng. J. 2021, 415, 129019. |
[44] | Zhuang, J.; Tian, Q.; Liu, Q.; Liu, P.; Cui, X.; Li, Y.; Fan, M. Phys. Chem. Chem. Phys. 2017, 19, 9519. |
[45] | Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Appl. Catal. B: Environ. 2017, 209, 358. |
[46] | Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Appl. Catal. B Environ. 2021, 280, 119409. |
[47] | Hu, J.; Fan, W.; Ye, W.; Huang, C.; Qiu, X. Appl. Catal. B: Environ. 2014, 158-159, 182. |
[48] | Xie, L.; Zhang, T.; Wang, X.; Zhu, W.; Liu, Z.; Liu, M.; Wang, J.; Zhang, L.; Du, T.; Yang, C.; Zhu, M.; Wang, J. J. Clean. Prod. 2022, 359, 131808. |
[49] | He, J.; Yang, X.; Men, B.; Wang, D. J. Environ. Sci. (China) 2016, 39, 97. |
[50] | Wang, Z.; Mao, X.; Chen, P.; Xiao, M.; Monny, S. A.; Wang, S.; Konarova, M.; Du, A.; Wang, L. Angew. Chem. Int. Ed. 2019, 58, 1030. |
[51] | Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Coord. Chem. Rev. 2015, 287, 114. |
[52] | Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B: Environ. 2020, 268, 118382. |
[53] | Chen, F.; He, A.; Wang, Y.; Yu, W.; Chen, H.; Geng, F.; Li, Z.; Zhou, Z.; Liang, Y.; Fu, J.; Zhao, L.; Wang, Y. Chemosphere 2022, 298, 134176. |
[54] | Gazi, S.; Rajakumar, A.; Singh, N. D. J. Hazard. Mater. 2010, 183, 894. |
[55] | Zeng, Q.; Jiang, Y.; Ni, J.; Tang, J.; Wen, Y.; Fu, X.; Zhang, Q.; Xiong, Z.; Cai, T. Chem. Eng. J. 2022, 450, 138067. |
[56] | He, L.; Jiang, Z. W.; Li, W.; Li, C. M.; Huang, C. Z.; Li, Y. F. ACS Appl. Mater. Interfaces 2018, 10, 28868. |
/
〈 |
|
〉 |