Review

Research Progress on Organic Cocrystals Nonlinear Optics Materials and Applications

  • Liangmeng Hao ,
  • Weigang Zhu
Expand
  • a Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072
    b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054

Received date: 2022-10-01

  Online published: 2022-11-08

Supported by

Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(KFJJ202001)

Abstract

With the appearance of second harmonic generation (SHG) and two-photon absorption (TPA), organic nonlinear optical (NLO) materials have played an increasingly important role in laser frequency conversion, biological imaging, micro- nano processing, optical limiting, terahertz wave (THz) and other fields in the past decades, arousing widespread interest. So far, most of the organic nonlinear optical active materials reported are single component which chemical synthesis is cumbersome, experimental conditions are rigorous and it is difficult to break the limit of the inherent properties of the single component. While organic composite material can rapidly broaden the variety of materials through simple forms such as blending, doping and cocrystallization, organic cocrystals based on intermolecular non-covalent interactions through more than one molecule have been developed to a large extent towards tuning and modifying the physicochemical properties of molecular solids. However, there is no systematic introduction of organic cocrystals in nonlinear optics at home and abroad. Firstly, the second-order and third-order nonlinear optical performance parameters and their testing methods are introduced; then, the latest research progress of molecular cocrystals materials in this field is introduced, including the types of materials, preparation methods, and the mechanism of optical nonlinearity effect; next, the possible applications of cocrystals nonlinear optical materials are discussed. Finally, some prospects for the development of this field are provided, and it is believed that this review can provide some reference for researchers in the field of organic cocrystals and nonlinear optics.

Cite this article

Liangmeng Hao , Weigang Zhu . Research Progress on Organic Cocrystals Nonlinear Optics Materials and Applications[J]. Acta Chimica Sinica, 2023 , 81(2) : 191 -206 . DOI: 10.6023/A22100411

References

[1]
Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G. Phys. Rev. Lett. 1961, 7, 118.
[2]
Ashkin, A.; Boyd, G. D.; Dziedzic, J. M.; Smith, R. G.; Ballman, A. A.; Levinstein, J. J.; Nassau, K. Appl. Phys. Lett. 1966, 9, 72.
[3]
Gong, Y.-P.; Hu, C.-L.; Ma, Y.-X.; Mao, J.-G.; Kong, F. Inorg. Chem. Front. 2019, 6, 3133.
[4]
Liu, T.; Zhang, D.; Huqe, M. R.; Wang, W.; Zapien, J. A.; Tsang, S.-W.; Luo, J. Sci. China. Chem. 2021, 65, 584.
[5]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics. 2010, 4, 611.
[6]
Ganeev, R. A. Nonlinear Optical Properties of Materials, Springer, London, 2012, p. xiv.
[7]
Shi, R.; Han, X.; Xu, J.; Bu, X.-H. Small. 2021, 17, e2006416.
[8]
Risk, W. P.; Lau, S. D. Appl. Phys. Lett. 1996, 69, 3999.
[9]
David, C. H. Opt. Lett. 1998, 23, 171.
[10]
Nash, F. R.; Bergman, J. G.; Boyd, G. D.; Turner, E. H. J. Appl. Phys. 1969, 40, 5201.
[11]
Chen, C. Sci. China Ser. B. 1984, 14, 598.
[12]
Wang, J.; Chen, C. J. Mater. Res. 2003, 18, 2479.
[13]
Tadashi, T.; Chen, C. Opt. Lett. 2003, 28, 254.
[14]
Lahav, M.; Kucharczyk, W. Cryst. Res. Technol. 1999, 34, 745.
[15]
Kenneth, H. IEEE J. Quantum Elect. 1968, 4, 243.
[16]
Liu, H.; Cheng, L. Appl. Optics. 1988, 27, 1006.
[17]
Hong, Y.; Zhang, H. Opt. Lett. 1993, 18, 772.
[18]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 78.
[19]
Tang, R.-L.; Zhou, S.-M.; Cheng, Z.-Y.; Yu, G.; Peng, Q.; Zeng, H.- Y.; Li, Q.-Q.; Li, Z. Chem. Sci. 2017, 8, 340.
[20]
Li, Z.-A.; Chen, P.-Y.; Xie, Y.-J.; Li, Z.; Qin, J.- G. Adv. Electron. Mater. 2017, 3, 1700138.
[21]
Kong, L.; Zhong, M.; Shuang, W.; Xu, Y.; Bu, X.- H. Chem. Soc. Rev. 2020, 49, 2378.
[22]
Medishetty, R.; Zareba, J. K.; Mayer, D.; Samoc, M.; Fischer, R. A. Chem. Soc. Rev. 2017, 46, 4976.
[23]
Mingabudinova, L. R.; Vinogradov, V. V.; Milichko, V. A.; Hey-Hawkins, E.; Vinogradov, A. V. Chem. Soc. Rev. 2016, 45, 5408.
[24]
Xiong, J.; Qian, X.; Zhao, L.; Xu, J. Inorg. Chem. Commun. 2019, 105, 20.
[25]
Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T. J. Opt. 2016, 18, 4.
[26]
Sivakumar, T.; Anbarasan, R.; Kalyana Sundar, J.; Anna Lakshmi, M. J. Mater. Sci. Mater. Electron. 2020, 31, 12943.
[27]
Sivakumar, T.; Eniya, P.; Sundar, J. K.; Thirunavukkarasu, A.; Lakshmi, M. A.; Kanthimathi, G. Cryst. Res. Technol. 2021, 56, 2100016.
[28]
Xu, Y.; Wang, W.; Ge, Y.; Guo, H.; Zhang, X.; Chen, S.; Deng, Y.; Lu, Z.; Zhang, H. Adv. Funct. Mater. 2017, 27, 1702437.
[29]
Wang, S.; Shen, B.; Wei, H.-L.; Liu, Z.; Chen, Z.; Zhang, Y.; Su, Y.; Zhang, J.-Z.; Wang, H.; Su, Q. Nanoscale. 2019, 11, 10220.
[30]
Yan, D.; Yang, H.; Meng, Q.; Lin, H.; Wei, M. Adv. Funct. Mater. 2013, 24, 587.
[31]
Zhao, J.; Huang, W. Aerosp. Sci. Technol. 1998, 1, 16.
[32]
Jiang, M.; Zhen, C.; Li, S.; Zhang, X.; Hu, W. Front. Chem. 2021, 9, 764628.
[33]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 3.
[34]
Zhu, W.-G.; Zhu, L.-Y.; Sun, L.-J.; Zhen, Y.-G.; Dong, H.-L.; Wei, Z.-X.; Hu, W.-P. Angew. Chem., Int. Ed. 2016, 55, 14023.
[35]
Sun, L.-J.; Zhu, W.-G.; Wang, W.; Yang, F.-X.; Zhang, C.-C.; Wang, S.-F.; Zhang, X.-T.; Li, R.-J.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2017, 56, 7831.
[36]
Aitipamula, S.; Banerjee, R.; Bansal, A. K.; Biradha, K.; Cheney, M. L.; Choudhury, A. R.; Desiraju, G. R.; Dikundwar, A. G.; Dubey, R.; Duggirala, N.; Ghogale, P. P.; Ghosh, S.; Goswami, P. K.; Goud, N. R.; Jetti, R. R. K. R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A. S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C. M.; Rodriguez-Hornedo, N.; Rogers, R. D.; Row, T. N. G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C. C.; Swift, J. A.; Thaimattam, R.; Thakur, T. S.; Kumar Thaper, R.; Thomas, S. P.; Tothadi, S.; Vangala, V. R.; Variankaval, N.; Vishweshwar, P.; Weyna, D. R.; Zaworotko, M. J. Cryst. Growth. Des. 2012, 12, 2147.
[37]
Yan, D.-P. Chem. Eur. J. 2015, 21, 4880.
[38]
Zhu, W.-G.; Wang, Y.-L.; Huang, C.-C.; Zhu, L.-Y.; Zhen, Y.-G.; Dong, H.-L.; Wei, Z.-X.; Guo, D.; Hu, W.-P. Sci. China Mater. 2020, 64, 169.
[39]
Zhou, B.; Zhao, Q.-H.; Tang, L.-C.; Yan, D.-P. Chem. Commun. 2020, 56, 7698.
[40]
Zhu, W.-G.; Yi, Y.-P.; Zhen, Y.-G.; Hu, W.-P. Small. 2015, 11, 2150.
[41]
Wang, Y.; Zhu, W.-G.; Du, W.-N.; Liu, X.-F.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2018, 57, 3963.
[42]
Wiscons, R. A.; Goud, N. R.; Damron, J. T.; Matzger, A. J. Angew. Chem., Int. Ed. 2018, 57, 9044.
[43]
Zhang, H.; Jiang, L.; Zhen, Y.; Zhang, J.; Han, G.; Zhang, X.; Fu, X.; Yi, Y.; Xu, W.; Dong, H.; Chen, W.; Hu, W.; Zhu, D. Adv. Electron. Mater. 2016, 2, 1500423.
[44]
Qin, Y.; Zhang, J.; Zheng, X.; Geng, H.; Zhao, G.; Xu, W.; Hu, W.; Shuai, Z.; Zhu, D. Adv. Mater. 2014, 26, 4093.
[45]
Zhu, W.-G.; Dong, H.-L.; Zhen, Y.-G.; Hu, W.-P. Sci. China Mater. 2015, 58, 854.
[46]
Wuest, J. D. Nat. Chem. 2012, 4, 74.
[47]
Sun, L.-J.; Zhu, W.-G.; Yang, F.-X.; Li, B.; Ren, X.; Zhang, X.-T.; Hu, W.-P. Phys. Chem. Chem. Phys. 2018, 20, 6009.
[48]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 2.
[49]
Chen, W.; Zhang, F.; Wang, C.; Jia, M.; Zhao, X.; Liu, Z.; Ge, Y.; Zhang, Y.; Zhang, H. Adv. Mater. 2021, 33, e2004446.
[50]
Bosshard, C.; Kn?pfle, G.; Prêtre, P.; Günter, P. J. Appl. Phys. 1992, 71, 1594.
[51]
Zhan, C.; Wang, D. Acta Phys.-Chim. Sin. 1999, 15, 805. (in Chinese)
[51]
(詹传郎, 王夺元, 物理化学学报, 1999, 15, 805.)
[52]
Qian, Y.; Sun, Y.-M.; Liu, J.-Z. Acta Chim. Sinica. 1998, 56, 340. (in Chinese)
[52]
(钱鹰, 孙岳明, 刘举正, 化学学报, 1998, 56, 340.)
[53]
Clays, K.; Persoons, A. Phys. Rev. Lett. 1991, 66, 2980.
[54]
Meng, F.-Q.; Fang, C.-S.; Cui, Y.-P.; Wang, X. Acta Chim. Sinica. 2000, 58, 384. (in Chinese)
[54]
(孟凡青, 房昌水, 崔一平, 汪昕, 化学学报, 2000, 58, 384.)
[55]
Meredith, G.; David, J. Macromolecules. 1982, 15, 1385.
[56]
Shi, W. Solid State Commun. 2000, 113, 483.
[57]
Shi, W. Opt. Commun. 2000, 183, 299.
[58]
Won, D.-S.; Jung, W.-T.; Lee, J.-Y. Polym. Bull. 2009, 62, 433.
[59]
Muggli, D. J. Biomed. Mater. Res. 1999, 46, 271.
[60]
Li, Y.; Li, H. Chinese Journal of Lasers. 2009, 36, 2140. (in Chinese)
[60]
(李云, 李慧, 中国激光, 2009, 36, 2140.)
[61]
Charra, F.; Devaux, F.; Nunzi, J. M.; Raimond, P. Phys. Rev. Lett. 1992, 68, 2440.
[62]
Jia, Y.-J.; Guo, B.; Wang, G.-M. High Power Laser and Particle Beams. 2005, 17, 193. (in Chinese)
[62]
(贾亚杰, 郭斌, 王恭明, 强激光与粒子束, 2005, 17, 193.)
[63]
Koscien, E.; Sanetra, J.; Gondek, E.; Jarosz, B.; Kityk, I. V.; Ebothe, J.; Kityk, A. V. Spectrochim. Acta A Mol. Biomol. 2005, 61, 1933.
[64]
Wang, L.-T.; Cui, Y.-P. Optoelectronic Technology. 2007, 27, 231. (in Chinese)
[64]
(王良涛, 崔一平, 光电子技术, 2007, 27, 231.)
[65]
Sun, Y.-X.; Wang, W.-J. Journal of Jinggangshan University. 2011, 32, 33. (in Chinese)
[65]
(孙彦星, 王文军, 井冈山大学学报, 2011, 32, 33.)
[66]
Boterashvili, M.; Lahav, M.; Shankar, S.; Facchetti, A.; van der Boom, M. E. J. Am. Chem. Soc. 2014, 136, 11926.
[67]
Wang, Y.; Sun, L.-J.; Wang, C.; Yang, F.-X.; Ren, X.-C.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Chem. Soc. Rev. 2019, 48, 1492.
[68]
Erdelyi, M. Chem. Soc. Rev. 2012, 41, 3547.
[69]
Aaker?y, C. B.; Wijethunga, T. K.; Desper, J.; ?akovi?, M. Cryst. Growth. Des. 2016, 16, 2662.
[70]
Carletta, A.; Spinelli, F.; d'Agostino, S.; Ventura, B.; Chierotti, M. R.; Gobetto, R.; Wouters, J.; Grepioni, F. Chemistry. 2017, 23, 5317.
[71]
Riley, K. E.; Murray, J. S.; Fanfrlik, J.; Rezac, J.; Sola, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P. J. Mol. Model. 2011, 17, 3309.
[72]
Zhu, W.-G.; Zheng, R.-H.; Zhen, Y.-G.; Yu, Z.-Y.; Dong, H.-L.; Fu, H.-B.; Shi, Q.; Hu, W.-P. J. Am. Chem. Soc. 2015, 137, 11038.
[73]
Li, A.; Wang, J.; Liu, Y.; Xu, S.; Chu, N.; Geng, Y.; Li, B.; Xu, B.; Cui, H.; Xu, W. Phys. Chem. Chem. Phys. 2018, 20, 30297.
[74]
Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.
[75]
Fan, G.; Yang, X.; Liang, R.; Zhao, J.; Li, S.; Yan, D.-P. CrystEngComm. 2016, 18, 240.
[76]
Yan, D.-P.; Delori, A.; Lloyd, G. O.; Friscic, T.; Day, G. M.; Jones, W.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Angew. Chem., Int. Ed. 2011, 50, 12483.
[77]
Zhang, J.-R.; Yan, J.; Xing, X.-Y.; Zhao, G.-J. SmartMat. 2021, 2, 554.
[78]
Li, S.; Yan, D. Adv. Opt. Mater. 2018, 6, 1800445.
[79]
Li, S.; Lin, Y.; Yan, D.-P. J. Mater. Chem. C. 2016, 4, 2527.
[80]
Thakuria, R.; Nath, N. K.; Saha, B. K. Cryst. Growth Des. 2019, 19, 523.
[81]
Ostroverkhova, O. Chem Rev. 2016, 116, 13279.
[82]
Khan, A.; Wang, M.; Usman, R.; Sun, H.; Du, M.; Xu, C. Cryst. Growth Des. 2017, 17, 1251.
[83]
Harada, J.; Ohtani, M.; Takahashi, Y.; Inabe, T. J. Am. Chem. Soc. 2015, 137, 4477.
[84]
Wang, Y.; Zhu, W.-G.; Dong, H.-L.; Zhang, X.-T.; Li, R.; Hu, W.-P. Top. Curr. Chem. (Cham). 2016, 374, 83.
[85]
Park, S. K.; Cho, I.; Gierschner, J.; Kim, J. H.; Kim, J. H.; Kwon, J. E.; Kwon, O. K.; Whang, D. R.; Park, J. H.; An, B. K.; Park, S. Y. Angew. Chem., Int. Ed. 2016, 55, 203.
[86]
Zhou, Q.; Du, H.; Yu, Y.; Liu, C.; Li, J.; Ren, J.; Ji, Z.; Pang, Z. J. Phys. Chem. C. 2022, 126, 13381.
[87]
Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958.
[88]
Gotoh, T.; Kondoh, T.; Egawa, K. J. Opt. Soc. Am. B. 2020, 6, 703.
[89]
Ji, Y.; Jones, C.; Baek, Y.; Park, G. K.; Kashiwagi, S.; Choi, H. S. Adv. Drug Deliv. Rev. 2020, 167, 121.
[90]
Jalani, G.; Naccache, R.; Rosenzweig, D. H.; Haglund, L.; Vetrone, F.; Cerruti, M. J. Am. Chem. Soc. 2016, 138, 1078.
[91]
Kim, H. M.; Cho, B. R. Chem. Rev. 2015, 115, 5014.
[92]
Sun, C.-L.; Li, J.; Wang, X.-Z.; Shen, R.; Liu, S.; Jiang, J.-Q.; Li, T.; Song, Q.-W.; Liao, Q.; Fu, H.-B.; Yao, J.-N.; Zhang, H.-L. Chem. 2019, 5, 600.
[93]
Shao, B.; Baroncini, M.; Qian, H.; Bussotti, L.; Di Donato, M.; Credi, A.; Aprahamian, I. J. Am. Chem. Soc. 2018, 140, 12323.
[94]
Wang, Y.; Wu, H.; Li, P.; Chen, S.; Jones, L. O.; Mosquera, M. A.; Zhang, L.; Cai, K.; Chen, H.; Chen, X. Y.; Stern, C. L.; Wasielewski, M. R.; Ratner, M. A.; Schatz, G. C.; Stoddart, J. F. Nat. Commun. 2020, 11, 4633.
[95]
Matsukawa, T.; Mineno, Y.; Odani, T.; Okada, S.; Taniuchi, T.; Nakanishi, H. J. Cryst. Growth. 2007, 299, 344.
[96]
Wang, Y.; Zhang, X.; Zhang, X.; Zhou, T.; Cui, Z.; Zhang, K. J. Mater. Chem. A. 2022, 10, 1780.
[97]
Kim, S. J.; Kang, B. J.; Puc, U.; Kim, W. T.; Jazbinsek, M.; Rotermund, F.; Kwon, O. P. Adv. Opt. Mater. 2021, 9, 2101019.
[98]
Shin, M. H.; Lee, S. H.; Kang, B. J.; Jazbin?ek, M.; Yoon, W.; Yun, H.; Rotermund, F.; Kwon, O. P. Adv. Funct. Mater. 2018, 28, 1805257.
[99]
Kobayashi, H. Chem. Rev. 2010, 110, 2620.
[100]
Watt, W. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7075.
[101]
Helmchen, F.; Denk, W. Nat. Methods. 2005, 2, 932.
[102]
Kim, H. M.; An, M. J.; Hong, J. H.; Jeong, B. H.; Kwon, O.; Hyon, J.-Y.; Hong, S.-C.; Lee, K. J.; Cho, B. R. Angew. Chem., Int. Ed. 2008, 47, 2231.
[103]
Yang, W.; Chan, P. S.; Chan, M. S.; Li, K. F.; Lo, P. K.; Mak, N. K.; Cheah, K. W.; Wong, M. S. Chem. Commun. (Camb). 2013, 49, 3428.
[104]
Kim, M. K.; Lim, C. S.; Hong, J. T.; Han, J. H.; Jang, H. Y.; Kim, H. M.; Cho, B. R. Angew. Chem., Int. Ed. 2010, 49, 364.
[105]
Charier, S.; Ruel, O.; Baudin, J. B.; Alcor, D.; Allemand, J. F.; Meglio, A.; Jullien, L. Angew. Chem., Int. Ed. 2004, 43, 4785.
[106]
Tian, Y. S.; Lee, H. Y.; Lim, C. S.; Park, J.; Kim, H. M.; Shin, Y. N.; Kim, E. S.; Jeon, H. J.; Park, S. B.; Cho, B. R. Angew. Chem., Int. Ed. 2009, 48, 8027.
[107]
Feng, X.; Wang, M. Org. Lett. 2010, 12, 2194.
[108]
Kang, D. E.; Lim, C. S.; Kim, J. Y.; Kim, E. S.; Chun, H. J.; Cho, B. R. Anal. Chem. 2014, 86, 5353.
[109]
Park, H. J.; Lim, C. S.; Kim, E. S.; Han, J. H.; Lee, T. H.; Chun, H. J.; Cho, B. R. Angew. Chem., Int. Ed. 2012, 51, 2673.
[110]
Ouyang, X.; Zeng, H.; Ji, W. J. Phys. Chem. B. 2009, 113, 14565.
[111]
Albota, M.; Beljonne, D.; Bredas, J.-L. Science. 1998, 281, 1653.
[112]
Su, X.; Guang, S.; Li, C.; Xu, H.; Liu, X.; Wang, X.; Song, Y. Macromolecules. 2010, 43, 2840.
[113]
Pang, X.; Tao, Y.-L.; Zhang, J.-F.; Ren, G.-J. J. Mol. Struct. 2023, 1271, 134079.
[114]
Yan, Z.; Guang, S.; Xu, H.; Liu, X.-Y. Dyes Pigments. 2013, 99, 720.
[115]
Hou, X.; Sun, J.; Liu, Z.; Yan, C.; Song, W.; Zhang, H. L.; Zhou, S.; Shao, X. Chem. Commun. (Camb). 2018, 54, 10981.
[116]
Naoto, S.; Atsushi, H. Chem. Mater. 2005, 17, 20.
Outlines

/