Preparation of Powdered Activated Carbon Matrix Composites and Their Decontamination Performance and Mechanisms for Oily Sewage
Received date: 2022-08-27
Online published: 2022-11-09
In order to solve the problems of low adsorption efficiency and slow precipitation rate for powdered activated carbon (PAC) in the process of removing hydrophilic organics with low molecular weight, this study successfully prepare a kind of powdered activated carbon matrix composites (PACMC) by reaction of mixed powdered activated carbon (PAC), potassium humate (HS), and polyaluminium chloride (PACl) raw materials in oily sewage as the purification adsorbent. We confirmed the micro-morphology and chemical composition of PACMC by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR), certifying that PACMC was synthesized by chemical reaction of PAC, HS and PACl. PACMC has layered porous structure and functional groups, which is beneficial to the transport, diffusion and chemical adsorption of oily sewage molecules. The static adsorption experiments were carried out to investigate the adsorption properties of organic pollutants in oily sewage by PACl, PAC and PACMC respectively. The results showed that the adsorption capacity of PACMC for organic pollutants in oily sewage was 2~3 times as high as that of PAC and PACl (qe=23.04 mg•g‒1, C0=300 mg•L‒1). When the adsorption time reached 120 min, the binding of the active site on PACMC and organic pollutants in oily sewage had basically reached saturation (qe=23.04 mg•g‒1, C0=300 mg•L‒1). The pH value of the solution has a significant effect on the adsorption of organic pollutants in oily sewage by PACMC, and the best adsorption effect was observed at pH=3 (qe=27.6 mg•g‒1, C0=300 mg•L‒1). The adsorption of organic pollutants in oily sewage by PACMC can be well described by the pseudo-second-order kinetics. The kinetic fitting results revealed that the adsorption process involved several steps, where the chemical adsorption and intra-particle diffusion both played the important roles. The isothermal adsorption data were in accordance with the Dubinin-Radushkevich model, which indicated that the adsorption mechanism was chemical adsorption. Therefore, the mechanism of PACMC adsorption of oily sewage included chemical binding/chelation effect, hydrophobic effect and electrostatic adsorption effect.
Yarui Song , Kaisheng Wang , Guangyu An , Fajun Zhao , Bin Men , Zhaoxi Du , Dongsheng Wang . Preparation of Powdered Activated Carbon Matrix Composites and Their Decontamination Performance and Mechanisms for Oily Sewage[J]. Acta Chimica Sinica, 2022 , 80(12) : 1592 -1599 . DOI: 10.6023/A22080375
| [1] | Wang, W.; Liu, J.-C.; Huo, W.-C.; Wang, J.; Wang, Q.-H. Mater. Rep. 2020, 34, 23027. (in Chinese) |
| [1] | ( 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉, 材料导报 2020, 34, 23027.) |
| [2] | Cavalcanti, J. V. F. L.; Abreu, C. A. M.; Carvalho, M. N.; Sobrinho, M. A.; Benachour, M.; Baraúna, O. S. Petrochem. 2012, 14, 277. |
| [3] | Ogbodo, N. O.; Asadu, C. O.; Ezema, C. A.; Onoh, M. I.; Elijah, O. C.; Ike, I. S.; Onoghwarite, O. E. J. Hazard. Mater. Adv. 2021, 2, 100010. |
| [4] | Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Sci. Total Environ. 2021, 765, 142795. |
| [5] | Al-Anzi, B. S.; Siang, O. C. RSC Adv. 2017, 7, 20981. |
| [6] | Nasrullah, M.; Zularisam, A. W.; Krishnan, S.; Sakinah, M.; Singh, L.; Fen, Y. W. Chin. J. Chem. Eng. 2019, 27, 208. |
| [7] | Jamaly, S.; Giwa, A.; Hasan, S. W. J. Environ. Sci. 2015, 37, 15. |
| [8] | Zhu, X.; Tian, Y.; Li, F.; Liu, Y.; Wang, X.; Hu, X. Environ. Sci. Pollut. Res. 2018, 25, 22911. |
| [9] | Gupta, S.; Tai, N. H. J. Mater. Chem. A 2016, 4, 1550. |
| [10] | Chen, X.-L. Exp. Sci. Technol. 2006, 27. (in Chinese) |
| [10] | ( 陈晓玲, 实验科学与技术, 2006, 27.) |
| [11] | Matsui, Y.; Nakao, S.; Sakamoto, A.; Taniguchi, T.; Pan, L.; Matsushita, T.; Shirasaki, N. Water Res. 2015, 85, 95. |
| [12] | Ando, N.; Matsui, Y.; Kurotobi, R.; Nakano, Y.; Matsushita, T.; Ohno, K. Water Res. 2010, 44, 4127. |
| [13] | Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. J. Water Process Eng. 2022, 47, 102801. |
| [14] | Bose, S.; Ghosh, A.; Das, A.; Rahaman, M. ChemistrySelect 2020, 5, 14168. |
| [15] | Shivaprasad, P.; Kaushik, S.; Sivasamy, A.; Nethaji, S. Sep. Sci. Technol. 2020, 55, 2879. |
| [16] | Jia, Y. F.; Xiao, B.; Thomas, K. M. Langmuir 2002, 18, 470. |
| [17] | Nakazawa, Y.; Matsui, Y.; Hanamura, Y.; Shinno, K.; Shirasaki, N.; Matsushita, T. Water Res. 2018, 147, 311. |
| [18] | Shao, H.; Liu, X.-L.; Li, Y.-J.; Ding, J. Acta Sci. Circumstantiae. 2015, 35, 2114. (in Chinese) |
| [18] | ( 邵红, 刘相龙, 李云姣, 丁佳, 环境科学学报, 2015, 35, 2114.) |
| [19] | Ewis, D.; Mahmud, N.; Benamor, A.; Ba-Abbad, M. M.; Nasser, M.; El-Naas, M.; Water, Air, Soil Pollut. 2022, 233, 1. |
| [20] | Deng, S.-P. Multipurp. Util. Miner. Resour. 2009, 27. (in Chinese) |
| [20] | ( 邓书平, 矿产综合利用, 2009, 27.) |
| [21] | Wang, J.; Guo, X. J. Hazard. Mater. 2020, 390, 122156. |
| [22] | Zhu, S.; Khan, M. A.; Wang, F.; Bano, Z.; Xia, M. Chem. Eng. J. 2020, 392, 123711. |
| [23] | Ullah, S.; Hussain, S.; Ahmad, W.; Khan, H.; Khan, K. I.; Khan, S. U.; Khan, S. Chem. Eng. Technol. 2020, 43, 564. |
| [24] | Zhan, Y.; Lin, J.; Zhu, Z. J. Hazard. Mater. 2011, 186, 1972. |
| [25] | Jia, Z.; Li, Z.; Ni, T.; Li, S. B. J. Mol. Liq. 2017, 229, 285. |
| [26] | Lin, J.; Zhan, Y.; Zhu, Z. Colloids Surf., A 2011, 384, 9. |
| [27] | Chen, H.; Dai, G.; Zhao, J.; Zhong, A.; Wu, J.; Yan, H. J. Hazard. Mater. 2010, 177, 228. |
| [28] | Zhang, W.-Y.; Hao, Z.-Y.; Lai, L.; Mei, P. Ind. Water Treat. 2021, 41, 72. (in Chinese) |
| [28] | ( 张文燕, 郝紫阳, 赖璐, 梅平, 工业水处理. 2021, 41, 72.) |
| [29] | Rajak, V. K.; Kumar, H.; Mandal, A. Int. J. Surf. Sci. Eng. 2016, 10, 600. |
| [30] | Tan, I. A. W.; Hameed, B. H. J. Appl. Sci. 2010, 10, 2565. |
/
| 〈 |
|
〉 |