Study on Multimodal Color-switching Anti-counterfeiting Based on Magnetically Responsive Photonic Crystals and Quantum Dots
Received date: 2022-09-24
Online published: 2022-11-24
Supported by
National Natural Science Foundation of China(21908201); National Natural Science Foundation of China(22178324); Zhejiang Provincial Natural Science Foundation(LY21B060011); China Postdoctoral Science Foundation(2020M671793)
Counterfeiting is a growing global problem, which could be effectively curbed by developing novel anti- counterfeiting materials. Responsive photonic crystals (RPCs) are one kind of promising materials for anti-counterfeiting because of their vivid rainbow effect and stimulus responsive discoloration performance. In addition to RPCs, photoluminescence materials with intrinsic emission color, can also be used for anti-counterfeiting. As one of the most common photoluminescence materials, quantum dots (QDs) exhibit narrow emission width, saturated color, and tunable emission due to the quantum confinement effect. Despite RPCs and QDs with tunable colors have shown great potential for anti-counterfeiting and information encryption, most of their color variations are actuated by a single mode, which hinders their advanced applications. In this paper, taking advantage of the dynamic continuous magnetochromic property of Fe3O4@SiO2 (M) superparamagnetic colloids in organic solvents and the photoluminescence behavior of CdTe quantum dots (CdTe QDs) under the excitation of UV light, a M/QDs/EG/PDMS composite film with multimodal color-switching function for anti-counterfeiting was fabricated by encapsulating ethylene glycol (EG) droplets containing M colloids and CdTe QDs in elastomeric polydimethylsiloxane (PDMS). The internal structure, optical and mechanical properties were characterized by optical microscope, fiber optical spectrometer, fluorescence spectrometer, digital camera and tensile testing machine. The results showed that the composite film exhibited bright structural color instantaneously under application of a magnetic field. The diffraction wavelength of the composite film displayed a continuous red or blue shift with the decrease or increase of the magnetic field intensity, and the red or blue shifting range could reach 145 nm. Moreover, the composite film could emit bright fluorescence under the excitation of UV light and exhibited good photoluminescence function. In addition, the composite film showed good elasticity and the percentage of breaking elongation of the film could reach 132%, which provides a foundation for the application of anti-counterfeiting by attaching on the surface of different materials. Furthermore, through the patterned design, a patterned anti-counterfeiting film with rapid response to color change, reversible pattern hiding, and various color changes can be prepared, which is conducive to its application in the field of information encryption and advanced anti-counterfeiting.
Wentao Wang , Gaochong Zhao , Liu Yang , Yicheng Zhou , Liming Ding . Study on Multimodal Color-switching Anti-counterfeiting Based on Magnetically Responsive Photonic Crystals and Quantum Dots[J]. Acta Chimica Sinica, 2022 , 80(12) : 1576 -1582 . DOI: 10.6023/A22090399
[1] | Arppe, R.; Srensen, T. J. Nat. Rev. Chem. 2017, 1, 31. |
[2] | Chang, K.; Li, Q. Q.; Li, Z. Chin. J. Org. Chem. 2020, 40, 3656. (in Chinese) |
[2] | ( 常凯, 李倩倩, 李振, 有机化学 2020, 40, 3656.) |
[3] | Liu, Y.; Zheng, Y. H.; Zheng, Y. B.; Ma, F. M.; Zheng, X. J.; Yang, K. Y.; Zheng, X.; Xu, Z. W.; Ju, S. M.; Zheng, Y. T.; Guo, T. L.; Qian, L.; Li, F. S. ACS Appl. Mater. Interfaces 2020, 12, 39649. |
[4] | Fang, Y.; Ni, Y. L.; Leo, S.; Taylor, C.; Basile, V.; Jiang, P. Nat. Commun. 2015, 6, 7416. |
[5] | Hou, J.; Li, M. Z.; Song, Y. L. Angew. Chem. Int. Ed. 2018, 57, 2544. |
[6] | Qi, Y.; Chu, L.; Niu, W. B.; Tang, B. T.; Wu, S. L.; Ma, W.; Zhang, S. F. Adv. Funct. Mater. 2019, 29, 1903743. |
[7] | Ge, P.; Zhang, J. L.; Liu, Y. S.; Wang, S. L.; Liu, W. D.; Yu, N. Z.; Wu, Y. X.; Zhang, J. H.; Yang, B. Adv. Funct. Mater. 2018, 28, 1802001. |
[8] | Zhang, P.; Shi, X. Y.; Schenning, A. P. H. J.; Zhou, G. F.; Haan, L. T. Adv. Mater. Interfaces 2019, 7, 1901878. |
[9] | Zhang, P.; Zhou, G. F.; De Haan, L. T.; Schenning, A. P. H. J. Adv. Funct. Mater. 2020, 31, 2007887. |
[10] | Zhang, Y. L.; Wang, Y.; Wang, H.; Yu, Y.; Zhong, Q. F.; Zhao, Y. J. Small 2019, 15, 1902198. |
[11] | Ma, W.; Kou, Y. S.; Zhao, P.; Zhang, S. F. ACS Appl. Polym. Mater. 2020, 4, 1605. |
[12] | Ge, D. T.; Lee, E.; Yang, L. L.; Cho, Y.; Li, M.; Gianola, D. S.; Yang, S. Adv. Mater. 2015, 27, 2489. |
[13] | Qin, M. M.; Li, X.; Zheng, Y. P.; Zhang, Y.; Li, C. J. Acta Chim. Sinica 2015, 73, 1161. (in Chinese) |
[13] | ( 秦咪咪, 李昕, 郑一平, 张焱, 李从举, 化学学报 2015, 73, 1161.) |
[14] | Kim, J. H.; Moon, R. H.; Lee, R. Y.; Park, R. Appl. Phys. Lett. 2010, 97, 103701. |
[15] | Hu, Y. X.; He, L.; Yin, Y. D. Angew. Chem. Int. Ed. 2011, 50, 3747. |
[16] | Hu, H. B.; Chen, Q. W.; Tang, J.; Hu, X. Y.; Zhou, X. H. J. Mater. Chem. 2012, 22, 11048. |
[17] | Li, Z. W.; Wang, M. S.; Zhang, X. L.; Wang, D. W.; Xu, W. J.; Yin, Y. D. Nano Lett. 2019, 19, 6673. |
[18] | Kumar, P.; Singh, S.; Gupta, B. K. Nanoscale 2016, 8, 14297. |
[19] | Xi, Z. F.; Yuan, F. L.; Wang, Z. F.; Li, S. H.; Fan, L. Z. Acta Chim. Sinica 2018, 76, 460. (in Chinese) |
[19] | ( 郗梓帆, 袁方龙, 王子飞, 李淑花, 范楼珍, 化学学报 2018, 76, 460.) |
[20] | Shi, L. F.; Meng, L. H.; Jiang, F.; Ge, Y.; Li, F.; Wu, X. G.; Zhong, H. Z. Adv. Funct. Mater. 2019, 29, 1093648. |
[21] | Pan, J.; Feng, S. S. Biomaterials 2009, 30, 1176. |
[22] | Chen, W.; Zhang, J. Z.; Joly, A. G. J. Nanosci. Nanotechnol. 2004, 4, 919. |
[23] | Zheng, X.; Zhu, Y. B.; Liu, Y.; Zhou, L. P.; Xu, Z. W.; Chen, F.; Zheng, C. Z.; Zheng, Y. T.; Bai, J. Y.; Yang, K. Y.; Zhu, D. Y.; Yao, J. M.; Hu, H. L.; Zheng, Y. H.; Guo, T. L.; Li, F. S. ACS Appl. Mater. Interfaces 2021, 13, 15701. |
[24] | Park, S. J.; Jin, Y. P.; Chung, J. W.; Yang, H. K.; Moon, B. K.; Yi, S. S. Chem. Eng. J. 2019, 383, 123200. |
[25] | Yong, J. J.; Soo, Y. S. Mater. Express 2021, 11, 1554. |
[26] | Liu, Y.; Han, F.; Li, F.; Zhao, Y.; Chen, M.; Xu, Z.; Zheng, X.; Hu, H.; Yao, J.; Guo, T.; Lin, W. Z.; Zheng, Y. H.; You, B. G.; Liu, P.; Li, Y.; Qian, L. Nat. Commun. 2019, 10, 2409. |
[27] | Tan, A. Z.; Yang, G. H.; Wan, X. J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 253, 119583. |
[28] | Wang, W. T.; Tang, B. T.; Ju, B. Z.; Zhang, S. F. RSC Adv. 2015, 5, 75292. |
[29] | Wang, W. T. Ph.D. Dissertation, Dalian University of Technology, Dalian, 2018. (in Chinese) |
[29] | ( 王文涛, 博士论文, 大连理工大学, 大连, 2018.) |
[30] | Hu, Y. X.; He, L.; Han, X. G.; Wang, M. S.; Yin, Y. D. Nano Res. 2015, 8, 611. |
[31] | Guo, J.; Yang, W. L.; Wang, C. C. J. Phys. Chem. B 2005, 109, 17467. |
[32] | Luo, W.; Ma, H. R.; Mou, F. Z.; Zhu, M. X.; Yan, J. D.; Guan, J. G. Adv. Mater. 2014, 26, 1058. |
[33] | Ge, J. P. Yin, Y. D. Adv. Mater. 2008, 20, 3485. |
[34] | Fang, Y. Q.; Fei, W. W.; Shen, X. Q.; Guo, J.; Wang, C. C. Mater. Horiz. 2021, 8, 2079. |
[35] | Shang, S. L.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. J. Colloid Interface Sci. 2016, 483, 11. |
[36] | Wang, W. T.; Fan, X. Q.; Li, F. H.; Qiu, J. J.; Umair, M. M.; Ren, W. C.; Ju, B. Z.; Zhang, S. F.; Tang, B. T. Adv. Optical Mater. 2018, 1701093. |
[37] | Ye, S. Y.; Fu, Q. Q.; Ge, J. P. Adv. Funct. Mater. 2014, 24, 6430. |
/
〈 |
|
〉 |