Anode Current Collector for Aqueous Zinc-ion Batteries: Issues and Design Strategies
Received date: 2022-10-08
Online published: 2022-12-01
Supported by
Science and technology innovation Program of Hunan Province(2022RC3050); Science and technology innovation Program of Hunan Province(2017TP1001); Hunan Provincial Innovation Foundation For Postgraduate(CX20220159); Fundamental Research Funds for the Central Universities of Central South University(2022ZZTS0071); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University
Aqueous zinc ion batteries possess the characteristics of cost-effectiveness, environmental benignancy, intrinsic safety, and relatively high energy density, and are promising to be used in large-scale electrochemical energy storage devices. However, the current commercial zinc foil anode is considerably excessive compared with cathode active materials, which significantly decreases the energy density of the battery. And there are serious problems of anode perforation, tab falling off and so on. Loading zinc on current collector as anode is effective to improve depth of discharge and avoid the electrode perforation. Nevertheless, the zinc dendrites and side reactions are prone to generate at the current collector interface, and they seriously affect the cycle life of the battery. In this review, the causes of zinc dendrites and side reactions and their influence on the electrochemical performance of zinc anode are analyzed, and the design ideas of the zinc anode current collectors are summarized from two aspects of composition selection and structure construction, including the selection of zincophilic materials, the design of preferred-orientation substrates and the construction of three-dimensional current collector structures. Designing an appropriate current collector can effectively regulate the plating and stripping behavior of zinc metal and promote the practical application of aqueous zinc ion batteries.
Huimin Ji , Chunlin Xie , Qi Zhang , Yixin Li , Huanhuan Li , Haiyan Wang . Anode Current Collector for Aqueous Zinc-ion Batteries: Issues and Design Strategies[J]. Acta Chimica Sinica, 2023 , 81(1) : 29 -41 . DOI: 10.6023/A22100413
[1] | Zuo, S.-Y.; Xu, X.-J.; Ji, S.-M.; Wang, Z.-S.; Liu, Z.-B.; Liu, J. Chem. - Eur. J. 2021, 27, 830. |
[2] | Zhang, Q.; Luan, J.-Y.; Huang, X.-B.; Wang, Q.; Sun, D.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Nat. Commun. 2020, 11, 3961. |
[3] | Feng, Y.; Cao, C.-Y.; Zeng, J.; Wang, R.-C.; Peng, C.-Q.; Wang, X.-F. Trans. Nonferrous Met. Soc. China 2022, 32, 1253. |
[4] | Ren, G.-X.; Liao, C.-B.; Liu, Z.-H.; Xiao, S.-W. Trans. Nonferrous Met. Soc. China 2022, 32, 2746. |
[5] | Wang, J.; Li, Y.-S.; Liu, P.; Wang, F.; Yao, Q.-R.; Zou, Y.-J.; Zhou, H.-Y.; Balogun, M. S.; Deng, J.-Q. J. Cent. South Univ. 2021, 28, 361. |
[6] | He, W.-X.; Gu, T.-T.; Xu, X.-J.; Zuo, S.-Y.; Shen, J.-D.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2022, 14, 40031. |
[7] | Zhang, Q.; Luan, J.-Y.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Angew. Chem., Int. Ed. 2020, 59, 13180. |
[8] | Yi, Z.-H.; Chen, G.-Y.; Hou, F.; Wang, L.-Q.; Liang, J. Adv. Energy Mater. 2021, 11, 2003065. |
[9] | Yang, Z.-F.; Zhang, Q.; Xie, C.-L.; Li, Y.-H.; Li, W.-B.; Wu, T.-Q.; Tang, Y.-G.; Wang, H.-Y. Energy Stor. Mater. 2022, 47, 319. |
[10] | Blanc, L. E.; Kundu, D.; Nazar, L. F. Joule 2020, 4, 771. |
[11] | Zhang, X.-X.; Liu, R.; Wang, L.; Fu, H.-G. Acta Chim. Sinica 2021, 79, 671. (in Chinese) |
[11] | ( 张欣欣, 刘荣, 王磊, 付宏刚, 化学学报, 2021, 79, 671.) |
[12] | Li, Y.-L.; Yu, D.-D.; Lin, S.; Sun, D.-F.; Lei, Z.-Q. Acta Chim. Sinica 2021, 79, 200. (in Chinese) |
[12] | ( 李燕丽, 于丹丹, 林森, 孙东飞, 雷自强, 化学学报, 2021, 79, 200.) |
[13] | Zuo, S.-Y.; Liu, J.; He, W.-X.; Osman, S.; Liu, Z.-B.; Xu, X.-J.; Shen, J.-D.; Jiang, W.; Liu, J.-W.; Zeng, Z.-Y. J. Phys. Chem. Lett. 2021, 12, 7076. |
[14] | Du, M.; Miao, Z.-Y.; Li, H.-Z.; Sang, Y.-H.; Liu, H.; Wang, S.-H. J. Mater. Chem. A 2021, 9, 19245. |
[15] | Du, W.-C.; Huang, S.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Stor. Mater. 2022, 45, 465. |
[16] | Xu, Z.-X.; Jin, S.; Zhang, N.-J.; Deng, W.-J.; Seo, M.-H.; Wang, X.-L. Nano Lett. 2022, 22, 1350. |
[17] | Zhu, Y.-P.; Cui, Y.; Alshareef, H. N. Nano Lett. 2021, 21, 1446. |
[18] | Zhang, Q.; Luan, J.-Y.; Fu, L.; Wu, S.-G.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Angew. Chem., Int. Ed. 2019, 58, 15841. |
[19] | Zhou, J.-H.; Wu, F.; Mei, Y.; Hao, Y.-T.; Li, L.; Xie, M.; Chen, R.-J. Adv. Mater. 2022, 34, 2200782. |
[20] | Li, Q.; Wang, Y.-B.; Mo, F.-N.; Wang, D.-H.; Liang, G.-J.; Zhao, Y.-W.; Yang, Q.; Huang, Z.-D.; Zhi, C.-Y. Adv. Energy Mater. 2021, 11, 2003931. |
[21] | Li, X.-L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.-D.; Liang, G.-J.; Zhao, Y.-W.; Ma, L.-T.; Li, M.; Huang, Q.; Zhi, C.-Y. ACS Nano 2021, 15, 14631. |
[22] | Yang, Y.; Yuan, W.; Zhang, X.-Q.; Ke, Y.-Z.; Qiu, Z.-Q.; Luo, J.; Tang, Y.; Wang, C.; Yuan, Y.-H.; Huang, Y. Appl. Energy 2020, 276, 115464. |
[23] | Xie, C.-L.; Li, Y.-H.; Wang, Q.; Sun, D.; Tang, Y.-G.; Wang, H.-Y. Carbon Energy 2020, 2, 540. |
[24] | Du, W.-C.; Ang, E. H.-X.; Yang, Y.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Environ. Sci. 2020, 13, 3330. |
[25] | He, W.-X.; Zuo, S.-Y.; Xu, X.-J.; Zeng, L.-Y.; Liu, L.; Zhao, W.-M.; Liu, J. Mater. Chem. Front. 2021, 5, 2201. |
[26] | Yan, Z.; Wang, E.-D.; Jiang, L.-H.; Sun, G.-Q. RSC Adv. 2015, 5, 83781. |
[27] | Shi, X.-D.; Xu, G.-F.; Liang, S.-Q.; Li, C.-P.; Guo, S.; Xie, X.-S.; Ma, X.-M.; Zhou, J. ACS Sustainable Chem. Eng. 2019, 7, 17737. |
[28] | Zhao, Q.-W.; Liu, W.; Chen, Y.-J.; Chen, L.-B. Chem. Eng. J. 2022, 450, 137979. |
[29] | Tang, B.; Fan, H.-F.; Liu, Q.-F.; Zhang, Q.; Liu, M.; Wang, E.-D. Int. J. Energy Res. 2022, 46, 18562. |
[30] | Fan, X.-Y.; Yang, H.; Wang, X.-X.; Han, J.-X.; Wu, Y.; Gou, L.; Li, D.-L.; Ding, Y.-L. Adv. Mater. Interfaces 2021, 8, 2002184. |
[31] | Wang, L.-Y.; Huang, W.-W.; Guo, W.-B.; Guo, Z.-H.; Chang, C.-Y.; Gao, L.; Pu, X. Adv. Funct. Mater. 2022, 32, 2108533. |
[32] | Jian, Q.-P.; Guo, Z.-X.; Zhang, L.-C.; Wu, M.-C.; Zhao, T.-S. Chem. Eng. J. 2021, 425, 130643. |
[33] | Wang, R.; Xin, S.; Chao, D.-L.; Liu, Z.-X.; Wan, J.-D.; Xiong, P.; Luo, Q.-Q.; Hua, K.; Hao, J.-N.; Zhang, C.-F. Adv. Funct. Mater. 2022, 32, 2207751. |
[34] | Wang, T.-T.; Li, C.-P.; Xie, X.-S.; Lu, B.-G.; He, Z.-X.; Liang, S.-Q.; Zhou, J. ACS Nano 2021, 14, 16321. |
[35] | Zhou, J.; Shan, L.-T.; Tang, B.-Y.; Liang, S.-Q. Chin. Sci. Bull. 2020, 65, 3562. (in Chinese) |
[35] | ( 周江, 单路通, 唐博雅, 梁叔全, 科学通报, 2020, 65, 3562.) |
[36] | Lu, W.-J.; Zhang, C.-K.; Zhang, H.-M.; Li, X.-F. ACS Energy Lett. 2021, 6, 2765. |
[37] | Xie, F.-X.; Li, H.; Wang, X.-S.; Zhi, X.; Chao, D.-L.; Davey, K.; Qiao, S.-Z. Adv. Energy Mater. 2021, 11, 2003419. |
[38] | Huang, Y.; Ip, W.-S.; Lau, Y.-Y.; Sun, J.-F.; Zeng, J.; Yeung, N.-S.-S.; Ng, W.-S.; Li, H.-F.; Pei, Z.-X.; Xue, Q. ACS Nano 2017, 11, 8953. |
[39] | Li, S.-Y.; Fu, J.; Miao, G.-X.; Wang, S.-P.; Zhao, W.-Y.; Wu, Z.-C.; Zhang, Y.-J.; Yang, X.-W. Adv. Mater. 2021, 33, 2008424. |
[40] | Yin, Y.-B.; Wang, S.-N.; Zhang, Q.; Song, Y.; Chang, N.-N.; Pan, Y.-W.; Zhang, H.-M.; Li, X.-F. Adv. Mater. 2020, 32, 1906803. |
[41] | Miao, Z.-Y.; Du, M.; Li, H.-Z.; Zhang, F.; Jiang, H.-C.; Sang, Y.-H.; Li, Q.-F.; Liu, H.; Wang, S.-H. EcoMat 2021, 3, e12125. |
[42] | Cui, M.-W.; Xiao, Y.; Kang, L.-T.; Du, W.; Gao, Y.-F.; Sun, X.-Q.; Zhou, Y.-L.; Li, X.-M.; Li, H.-F.; Jiang, F.-Y.; Zhi, C.-Y. ACS Appl. Energy Mater. 2019, 2, 6490. |
[43] | Han, D.-L.; Wu, S.-C.; Zhang, S.-W.; Deng, Y.-Q.; Cui, C.-J.; Zhang, L.-A.; Long, Y.; Li, H.; Tao, Y.; Weng, Z.; Yang, Q.-H.; Kang, F.-Y. Small 2020, 16, 2001736. |
[44] | Tian, Y.; An, Y.-L.; Liu, C.-K.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. Energy Stor. Mater. 2021, 41, 343. |
[45] | Hong, L.; Wang, L.-Y.; Wang, Y.-L.; Wu, X.-M.; Huang, W.; Zhou, Y.-F.; Wang, K.-X.; Chen, J.-S. Adv. Sci. 2022, 9, 2104866. |
[46] | Zhang, Y.-J.; Wang, G.-Y.; Yu, F.-F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z.-J.; Wu, M.-H.; Liu, H.-K.; Dou, S.-X.; Wu, C. Chem. Eng. J. 2021, 416, 128062. |
[47] | Zhao, Q.-W.; Wang, Y.-Y.; Liu, W.; Liu, X.-Y.; Wang, H.; Yu, H.-M.; Chen, Y.-J.; Chen, L.-B. Adv. Mater. Interfaces 2022, 9, 2102254. |
[48] | Lu, Q.-Q.; Liu, C.-C.; Du, Y.-H.; Wang, X.-Y.; Ding, L.; Omar, A.; Mikhailova, D. ACS Appl. Mater. Interfaces 2021, 13, 16869. |
[49] | Zhang, Y.-M.; Howe, J. D.; Ben-Yosephen, S.; Wu, Y.-T.; Liu, N. ACS Energy Lett. 2021, 6, 404. |
[50] | Chen, T.; Wang, Y.-A.; Yang, Y.; Huang, F.; Zhu, M.-K.; Ang, B. T. W.; Xue, J.-M. Adv. Funct. Mater. 2021, 31, 2101607. |
[51] | Zeng, L.; He, H.-N.; Chen, H.-Y.; Luo, D.; He, J.; Zhang, C.-H. Adv. Energy Mater. 2022, 12, 2103708. |
[52] | Guan, Q.; Li, Y.-P.; Bi, X.-X.; Yang, J.; Zhou, J.-W.; Li, X.-L.; Cheng, J.-L.; Wang, Z.-P.; Wang, B.; Lu, J. Adv. Energy Mater. 2019, 9, 1901434. |
[53] | Cao, Q.-H.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J.-J.; Yang, J.-Y.; Cai, D.-M.; Pan, Z.-H.; Guan, C.; Huang, W. Adv. Funct. Mater. 2021, 31, 2103922. |
[54] | Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H.-Y.; Zhang, J.-T. Electrochim. Acta 2019, 296, 755. |
[55] | Wang, L.-P.; Li, N.-W.; Wang, T.-S.; Yin, Y.-X.; Guo, Y.-G.; Wang, C.-R. Electrochim. Acta 2017, 244, 172. |
[56] | Zhong, Y.; Zhou, S.; He, Q.; Pan, A.-Q. Energy Stor. Mater. 2021, 45, 48. |
[57] | Wang, T.; Sun, J.-M.; Hua, Y.-B.; Krishna, B.-N.-V.; Xi, Q.; Ai, W.; Yu, J.-S. Energy Stor. Mater. 2022, 53, 273. |
[58] | Du, W.-C.; Huang, S.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Stor. Mater. 2022, 45, 465. |
[59] | Zhao, Z.-D.; Wang, R.; Peng, C.-X.; Chen, W.-J.; Wu, T.-Q.; Hu, B.; Weng, W.-J.; Yao, Y.; Zeng, J.-X.; Chen, Z.-H.; Liu, P.-Y.; Liu, Y.-C.; Li, G.-S.; Guo, J.; Lu, H.-B.; Guo, Z.-P. Nat. Commun. 2021, 12, 6606. |
[60] | Cao, J.; Zhang, D.-D.; Gu, C.; Wang, X.; Wang, S.-M.; Zhang, X.-Y.; Qin, J.-Q.; Wu, Z.-S. Adv. Energy Mater. 2021, 11, 2101299. |
[61] | Foroozan, T.; Yurkiv, V.; Sharifi-Asl, S.; Rojaee, R.; Mashayek, F.; Shahbazian-Yassar, R. ACS Appl. Mater. Interfaces 2019, 11, 44077. |
[62] | Zhou, M.; Guo, S.; Li, J.-L.; Luo, X.-B.; Liu, Z.-X.; Zhang, T.-S.; Cao, X.-X.; Long, M.-Q.; Lu, B.-G.; Pan, A.-Q.; Fang, G.-Z.; Zhou, J.; Liang, S.-Q. Adv. Mater. 2021, 33, 2100187. |
[63] | Zheng, J.-X.; Archer, L. A. Sci. Adv. 2021, 7, eabe0219. |
[64] | Zheng, J.-X.; Zhao, Q.; Tang, T.; Yin, J.-F.; Quilty, C. D.; Renderos, G. D.; Liu, X.-T.; Deng, Y.; Wang, L.; Bock, D. C.; Jaye, C.; Zhang, D.-H.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C.; Archer, L. A. Science 2019, 366, 645. |
[65] | Tian, Y.; An, Y.-L.; Wei, C.-L.; Xi, B.-J.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. ACS Nano 2019, 13, 11676. |
[66] | Ishikawa, K.; Ito, Y.; Harada, S.; Tagawa, M.; Ujihara, T. Cryst. Growth Des. 2017, 17, 2379. |
[67] | Kim, Y.-J.; Kwon, S.-H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H.-S.; Lee, J.; Zhang, J.-G.; Lee, S.-G.; Guim, H.; Kim, H.-T. Energy Stor. Mater. 2019, 19, 154. |
[68] | Gu, Y.; Xu, H.-Y.; Zhang, X.-G.; Wang, W.-W.; He, J.-W.; Tang, S.; Yan, J.-W.; Wu, D.-Y.; Zheng, M.-S.; Dong, Q.-F.; Mao, B.-W. Angew. Chem., Int. Ed. 2019, 58, 3092. |
[69] | Qian, J.; Wang, S.; Li, Y.; Zhang, M.-L.; Wang, F.-J.; Zhao, Y.-Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R.-J. Adv. Funct. Mater. 2020, 31, 2006950. |
[70] | Xie, C.-L.; Yang, Z.-F.; Zhang, Q.; Ji, H.-M.; Li, Y.-H.; Wu, T.-Q.; Li, W.-B.; Wu, P.-F.; Wang, H.-Y. Research 2022, 2022, 9841343. |
[71] | Yan, Y.; Shu, C.-Z.; Zeng, T.; Wen, X.-J.; Liu, S.; Deng, D.-H.; Zeng, Y. ACS Nano 2022, 12, 9150. |
[72] | Yang, Q.; Bang, G.-J.; Guo, Y.; Liu, Z.-X.; Yon, B.-X.; Wang, D.-H.; Huang, Z.-D.; Li, X.-L.; Fan, J.; Zhi, C.-Y. Adv. Mater. 2019, 31, 1903778. |
[73] | Wang, X.-W.; Wang, F.-X.; Wang, L.-Y.; Li, M.-X.; Wang, Y.-F.; Chen, B.-W.; Zhu, Y.-S.; Fu, L.-J.; Zha, L.-S.; Zhang, L.-X.; Wu, Y.-P.; Huang, W. Adv. Mater. 2016, 28, 4904. |
[74] | Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Nat. Commun. 2015, 6, 8058. |
[75] | Li, T.; Gu, S.-C.; Lin, Q.-W.; Han, J.-W.; Zhou, G.-M.; Li, B.-H.; Kang, F.-Y.; Lyu, W. Chem. J. Chinese Universities 2021, 42, 1480. (in Chinese) |
[75] | ( 李曈, 谷思辰, 林乔伟, 韩俊伟, 周光敏, 李宝华, 康飞宇, 吕伟, 高等学校化学学报, 2021, 42, 1480.) |
[76] | Zhao, J.; Ren, H.; Liang, Q.-H.; Yuan, D.; Xi, S.-B.; Wu, C.; Manalastas, W.; Ma, J.-M.; Fang, W.; Zheng, Y.; Du, C.-F.; Srinivasan, M.; Yan, Q.-Y. Nano Energy 2019, 62, 94. |
[77] | Dong, W.; Shi, J.-L.; Wang, T.-S.; Yin, Y.-X.; Wang, C.-R.; Guo, Y.-G. RSC Adv. 2018, 8, 19157. |
[78] | Xue, P.; Guo, C.; Wang, N.-Y.; Zhu, K.-P.; Jing, S.-A.; Kong, S.; Zhang, X.-J.; Li, L.; Li, H.-P.; Feng, Y.-B.; Gong, W.-B.; Li, Q.-L. Adv. Funct. Mater. 2021, 31, 2106417. |
[79] | Zhang, Q.; Luan, J.-Y.; Huang, X.-B.; Zhu, L.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Small 2020, 16, 2000929. |
[80] | Zeng, Y.-X.; Zhang, X.-Y.; Qin, R.-F.; Liu, X.-Q.; Fang, P.-P.; Zheng, D.-Z.; Tong, Y.-X.; Lu, X.-H. Adv. Mater. 2019, 31, 1903675. |
[81] | An, Y.-L.; Tian, Y.; Li, Y.; Wei, C.-L.; Tao, Y.; Liu, Y.-P.; Xi, B.-J.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. Chem. Eng. J. 2020, 400, 125843. |
[82] | Bayaguud, A.; Luo, X.; Fu, Y.-P.; Zhu, C.-B. ACS Energy Lett. 2020, 5, 3012. |
[83] | Li, C.-P.; Shi, X.-D.; Liang, S.-Q.; Ma, X.-M.; Han, M.-M.; Wu, X.-W.; Zhou, J. Chem. Eng. J. 2020, 379, 122248. |
[84] | Xue, P.; Guo, C.; Li, L.; Li, H.-P.; Luo, D.; Tan, L.-C.; Chen, Z.-W. Adv. Mater. 2022, 34, 2110047. |
[85] | Kang, Z.; Wu, C.-L.; Dong, L.-B.; Liu, W.-B.; Mou, J.; Zhang, J.-W.; Chang, Z.-W.; Jiang, B.-Z.; Wang, G.-X.; Kang, F.-Y.; Xu, C.-J. ACS Sustainable Chem. Eng. 2019, 7, 3364. |
[86] | Liu, B.-T.; Wang, S.-J.; Wang, Z.-L.; Lei, H.; Chen, Z.-T.; Mai, W.-J. Small 2020, 16, 2001323. |
[87] | Wang, Z.; Huang, J.-H.; Guo, Z.-W.; Dong, X.-L.; Liu, Y.; Wang, Y.-G.; Xia, Y.-Y. Joule 2019, 3, 1289. |
/
〈 |
|
〉 |