Article

P-doped TiO2/C Nanotubes as Anodes for High-performance Li-ion Capacitors

  • Guoqiang Zhang ,
  • Jinghao Huo ,
  • Xin Wang ,
  • Shouwu Guo
Expand
  • a School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021
    b School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2022-11-10

  Online published: 2022-12-21

Supported by

Natural Science Foundation of Shaanxi University of Science and Technology(2016BJ-49); Natural Science Foundation of Shaanxi Province(2020JM-505)

Abstract

As an anode material for Li-ion capacitors (LICs), TiO2 exhibits pseudocapacitive behavior, low sodium storage potential and small structural changes in lithium storage process. However, poor conductivity and slow ion diffusion lead to sluggish lithium storage kinetics. Using sodium dihydrogen phosphate (NaH2PO4) as a phosphorus source, P-doped TiO2/C (P-TiO2/C) nanotubes are prepared by a simple solvothermal method to improve the lithium storage performance of TiO2. The P-TiO2/C nanotubes composed of nanosheets grown vertically on the surface can provide effective contact areas between electrolyte and active materials. And the C and P in P-TiO2/C are derived from the carbonization of alcohols and decomposition of NaH2PO4. P-doping easily causes P—O—Ti bond formed in TiO2 by P5+ replacing part of Ti4+, which can effectively improve the conductivity of TiO2. Electrochemical tests show that the P-TiO2/C anode for Li-ion batteries exhibits a high specific capacity (335 mAh•g-1 at a current density of 0.1 A•g-1), excellent rate capability (92 mAh•g-1 at a current density of 2.0 A•g-1) and long cycle performance (135 mAh•g-1 at a current density of 1.0 A•g-1 after 1000 cycles). In addition, the pseudocapacitive contribution of P-TiO2/C anode is about 96% at a scan rate of 2 mV•s-1. The superior lithium storage performance of P-TiO2/C nanotubes is derived from the P-doping in TiO2, which can change the electron structure of TiO2, which facilitates the electrons transport and lithium diffusion kinetics. The LICs assembled by P-TiO2/C anodes and activated carbon cathodes have a high energy density of 74.7 Wh•kg-1 at a power density of 250 W•kg-1, which are higher than some LICs based on titanic-based compound anodes. And the capacity retention of the LICs is about 43% after 10000 cycles at a current density of 1.0 A•g-1. In addition, after 10000 cycles test, a fully charged LICs can still light up the “LIC” model composed of 18 red LED lights. This work provides an idea for the design of TiO2 anode materials for high-performance LICs.

Cite this article

Guoqiang Zhang , Jinghao Huo , Xin Wang , Shouwu Guo . P-doped TiO2/C Nanotubes as Anodes for High-performance Li-ion Capacitors[J]. Acta Chimica Sinica, 2023 , 81(1) : 6 -13 . DOI: 10.6023/A22110456

References

[1]
Zhang, Y. X.; Wu, B. R.; Mu, G.; Ma, C. W.; Mu, D. B.; Wu, F. J. Energy Chem. 2022, 64, 615.
[2]
Bi, W. C.; Zhang, L. F.; Chen, J.; Tian, R. X.; Huang, H.; Yao, M. Acta Chim. Sinica 2022, 80, 756. (in Chinese)
[2]
( 毕文超, 张琳锋, 陈健, 田瑞雪, 黄昊, 姚曼, 化学学报, 2022, 80, 756.)
[3]
Zhang, Q. L.; Han, S. P.; Tian, F.; Feng, Z. Y.; Xi, B. J.; Xiong, S. L.; Qian, Y. T. Chinese J. Chem. 2021, 39, 1233.
[4]
Forouzandeh, P.; Ganguly, P.; Dahiya, R.; Pillai, S. C. J. Power Sources 2022, 519, 230744.
[5]
Liang, J. X.; Wang, D. W. Adv. Energy Mater. 2022, 12, 2200920.
[6]
Yang, S. Y.; Li, R. Z.; Nie, Z. T.; Zhang, H. J.; Zhang, Y.; Zhu, J. X. Inorg. Chem. Front. 2022, 9, 5579.
[7]
Liu, J. W.; Yue, M.; Wang, S. Q.; Zhao, Y. F.; Zhang, J. J. Adv. Funct. Mater. 2022, 32, 2107769.
[8]
Zhao, J.; Gong, J. W.; Li, Y. J.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Wang, G. L. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[8]
( 赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[9]
Mohanadas, D.; Sulaiman, Y. J. Power Sources 2022, 523, 231029.
[10]
Li, T.; Zhang, J. J.; Li, C. X.; Zhao, H.; Zhang, J.; Qian, Z.; Yin, L. W.; Wang, R. T. Sci. China Mater. 2022, 65, 2363.
[11]
Li, S. N.; Xu, Y. N.; Liu, W. H.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Zhang, X.; Sun, X. Z.; Wang, K.; Ma, Y. W. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.10.006.
[12]
Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. Small 2015, 11, 1470.
[13]
Liu, Y.; Ding, C. F.; Yan, X. D.; Xie, P. T.; Xu, B. Q.; Chen, L. L.; Liu, Y. C.; Liu, C. Z.; Yu, Y. H.; Lin, Y. H. Chem. Eng. J. 2021, 420, 129894.
[14]
Wang, L. B.; Yang, H. L.; Shu, T.; Xin, Y.; Chen, X.; Li, Y. Y.; Li, H.; Hu, X. L. ACS Appl. Energy Mater. 2018, 1, 1708.
[15]
Huo, J. H.; Xue, Y. J.; Zhang, L. F.; Wang, X. F.; Cheng, Y. Q.; Guo, S. W. J. Colloid Interf. Sci. 2019, 555, 791.
[16]
Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Wang, Y. R.; Tie, Z. X.; Jin, Z. Nano Res. 2019, 12, 1713.
[17]
Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Small 2018, 14, 1704508.
[18]
Zhao, H. S.; Qi, Y. L.; Liang, K.; Zhu, W. K.; Wu, H. B.; Li, J. B.; Ren, Y. R. Rare Metals 2022, 41, 1284.
[19]
Huo, J. H.; Xue, Y. J.; Wang, X. F.; Liu, Y.; Zhang, L. F.; Guo, S. W. J. Power Sources 2020, 473, 228551.
[20]
Huo, J. H.; Ren, Y. J.; Zhang, G. Q.; Wang, X. F.; Guo, S. W. ACS Appl. Energy Mater. 2022, 5, 3447.
[21]
Yao, M. L.; Wang, H. K.; Qian, R. F.; Yao, T. H.; Shi, J. W.; Cheng, Y. H. Inorg. Chem. Front. 2021, 8, 5024.
[22]
Gan, Q. M.; He, H. N.; Zhu, Y. H.; Wang, Z. Y.; Qin, N.; Gu, S.; Li, Z. Q.; Luo, W.; Lu, Z. G. ACS Nano 2019, 13, 9247.
[23]
Ren, Y. J.; Zhang, G. Q.; Huo, J. H.; Li, J. H.; Liu, Y.; Guo, S. W. J. Alloy. Compd. 2022, 902, 163730.
[24]
Que, L. F.; Yu, F. D.; Deng, L.; Gu, D. M.; Wang, Z. B. Energy Storage Mater. 2020, 25, 537.
[25]
Fleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Chem. Rev. 2020, 120, 6738.
[26]
Yang, C.; Lan, J. L.; Liu, W. X.; Liu, Y.; Yu, Y. H.; Yang, X. P. ACS Appl. Mater. Interfaces 2017, 9, 18710.
[27]
Wang, G.; Liu, Z. Y.; Wu, J. N.; Lu, Q. Mater. Lett. 2012, 71, 120.
[28]
Brousse, T.; Marchand, R.; Taberna, P. L.; Simon, P. J. Power Sources 2006, 158, 571.
Outlines

/