Review

Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion

  • Luyao Yu ,
  • Zhen Ren ,
  • Yusen Yang ,
  • Min Wei
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029

Received date: 2022-11-12

  Online published: 2022-12-21

Supported by

National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(21521005); National Natural Science Foundation of China(22102006); National Key Research and Development Program(2021YFC2103500); Beijing Natural Science Foundation(2212012); Fundamental Research Funds for the Central Universities(XK1803-05); Joint Research and Development Center of Molecular Chemical Engineering of SINOPEC

Abstract

Dicarboxylic acid is an important polyester monomer, which is widely used in all aspects of chemical fiber, light industry, electronics and other industrial production. With the development of social industrialization, the production of dicarboxylic acids from a large number of non-renewable petroleum resources has caused the lack of oil resources and environmental pollution of the earth. The preparation of high value-added chemicals dicarboxylic acids by biomass and its derivatives has attracted extensive attention in chemical applications. In the research of synthetic biomass dicarboxylic acid, it is of great significance to design and prepare catalysts with high activity and high stability. In recent years, many works have explored the types of catalysts and made certain research progress. In this review, the catalytic system for the preparation of C3~C6 dicarboxylic acid, including malonic acid, succinic acid, 2,5-furandicarboxylic acid and adipic acid, was reviewed from the aspects of biomass raw materials, catalyst performance evaluation and reaction mechanism, and the development of biomass dicarboxylic acid preparation is prospected.

Cite this article

Luyao Yu , Zhen Ren , Yusen Yang , Min Wei . Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion[J]. Acta Chimica Sinica, 2023 , 81(2) : 175 -190 . DOI: 10.6023/A22110459

References

[1]
Iglesias, J.; Martinez-Salazar, I.; Maireles-Torres, P.; Alonso, D. M.; Mariscal, R.; Lopez Granados, M. Chem. Soc. Rev. 2020, 49, 5704.
[2]
Lin, Y.-C.; Huber, G. W. Energy Environ. Sci. 2009, 2, 68.
[3]
Carlson, T. R.; Cheng, Y.-T.; Jae, J.; Huber, G. W. Energy Environ. Sci. 2011, 4, 145.
[4]
Cheng, Y.-T.; Jae, J.; Shi, J.; Fan, W.; Huber, G. W. Angew. Chem. Int. Ed. 2012, 51, 1387.
[5]
Pang, S. Biotechnol. Adv. 2019, 37, 589.
[6]
Vassilev, S. V.; Vassileva, C. G.; Vassilev, V. S. Fuel. 2015, 158, 330.
[7]
Yu, Q.; Wang, Y.; Van Le, Q.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Sonne, C.; Tabatabaei, M.; Lam, S. S.; Peng, W. Front. Energy Res. 2021, 9, 684234.
[8]
Tian, Z. W.; Da, W. M.; Wang, L.; Yang, Y. S.; Wei, M. Acta Chim. Sinica. 2022, 80, 1322. (in Chinese)
[8]
(田钊炜, 达伟民, 王雷, 杨宇森, 卫敏, 化学学报, 2022, 80, 1322.)
[9]
Morais, A. R. C.; da Costa Lopes, A. M.; Bogel-Lukasik, R. Chem. Rev. 2015, 115, 3.
[10]
Tanaka, T.; Lloyd, D. R. J. Membr. Sci. 2004, 238, 65.
[11]
Tanaka, T.; Ueno, M.; Watanabe, Y.; Kouya, T.; Taniguchi, M.; Lloyd, D. R. J. Chem. Eng. Japan. 2011, 44, 467.
[12]
Tanaka, T.; Nishimoto, T.; Tsukamoto, K.; Yoshida, M.; Kouya, T.; Taniguchi, M.; Lloyd, D. R. J. Membr. Sci. 2012, 396, 101.
[13]
Tiersch, T. R.; Monroe, W. T. Cryobiology. 2016, 73, 396.
[14]
Zhang, S. P.; Zhu, X. X.; Gong, Y. K. Acta Chim. Sinica. 2009, 67, 1903. (in Chinese)
[14]
(张世平, 朱霞霞, 宫永宽, 化学学报, 2009, 67, 1903.)
[15]
Zhang, W.; Ji, J. H.; Zhao, J.; Wang, X. W.; Xu, Y.; Yang, B.; Wang, P. L. New Chem. Mater. 2010, 38, 1. (in Chinese)
[15]
(张维, 季君晖, 赵剑, 王小威, 许颖, 杨冰, 王萍丽, 化工新型材料, 2010, 38, 1.)
[16]
Wan, Y.; Zhang, L.; Chen, Y.; Lin, J.; Hu, W.; Wang, S.; Lin, J.; Wan, S.; Wang, Y. Green Chem. 2019, 21, 6318.
[17]
Wang, Y.; Zhuang, M.; Chen, S.; Hu, W.; Sun, J.; Lin, J.; Wan, S.; Wang, Y. ACS Catal. 2017, 7, 6038.
[18]
Zhang, Z.; Huber, G. W. Chem. Soc. Rev. 2018, 47, 1351.
[19]
Dalli, S. S.; Tilaye, T. J.; Rakshit, S. K. Ind. Eng. Chem. Res. 2017, 56, 10582.
[20]
Vardon, D. R.; Franden, M. A.; Johnson, C. W.; Karp, E. M.; Guarnieri, M. T.; Linger, J. G.; Salm, M. J.; Strathmann, T. J.; Beckham, G. T. Energy Environ. Sci. 2022, 15, 3534.
[21]
Dong, K. Y.; Yang, T. T.; Wang, X. L.; He, Y.; Yu, J. Y. Text. Res. J. 2020, 41, 174. (in Chinese)
[21]
(董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇, 纺织学报, 2020, 41, 174.)
[22]
Wan, Y.; Lee, J.-M. ACS Catal. 2021, 11, 2524.
[23]
Xie, C. W.; Bai, S.; Song, B. A.; Yang, S. Acta Chim. Sinica. 2013, 71, 1301. (in Chinese)
[23]
(谢承卫, 柏松, 宋宝安, 杨松, 化学学报, 2013, 71, 1301.)
[24]
Zhang, H. M.; Wei, W. L.; Chang, H. H. Appl. Chem. Ind. 2007, 653. (in Chinese)
[24]
(张红梅, 魏文珑, 常宏宏, 应用化工, 2007, 653.)
[25]
Dong, H. H.; Li, J.; Yang, G. Z. Shandong Chem. Ind. 2015, 44, 49. (in Chinese)
[25]
(董浩浩, 李静, 杨国忠, 山东化工, 2015, 44, 49.)
[26]
Yan, L. F.; Qi, X. Y. ACS Sustain. Chem. Eng. 2014, 2, 897.
[27]
Liu, J. X.; Du, Z. T.; Yang, Y. L.; Lu, T. L.; Lu, F.; Xu, J. ChemSusChem. 2012, 5, 2151.
[28]
Yan, L.; Qi, X. ACS Sustain. Chem. Eng. 2014, 2, 897.
[29]
Cukalovic, A.; Stevens, C. V. Biofuel Bioprod. Bior. 2008, 2, 505.
[30]
Song, H.; Lee, S. Y. Enzyme Microb. Technol. 2006, 39, 352.
[31]
Cheng, K.-K.; Zhao, X.-B.; Zeng, J.; Zhang, J.-A. Biofuel Bioprod. Bior. 2012, 6, 302.
[32]
Palai, Y. N.; Shrotri, A.; Fukuoka, A. ACS Catal. 2022, 12, 3534.
[33]
Ghayur, A.; Verheyen, T. V.; Meuleman, E. J. Clean. Prod. 2019, 230, 1165.
[34]
Kim, J. S.; Baek, J. H.; Ryu, Y. B.; Hong, S.-S.; Lee, M. S. J. Nanosci. Nanotechnol. 2015, 15, 290.
[35]
Lee, M. S.; Kim, J.-S.; Baek, J. H.; Soo, H. S. Appl. Chem. Eng. 2013, 24, 650.
[36]
Yuan, H.; Zhang, C.; Huo, W.; Ning, C.; Tang, Y.; Zhang, Y.; Cong, D.; Zhang, W.; Luo, J.; Li, S.; Wang, Z. J. Chem. Sci. 2014, 126, 141.
[37]
Choudhary, H.; Nishimura, S.; Ebitani, K. Appl. Catal., A: Gen. 2013, 458, 55.
[38]
Harmer, M. A.; Sun, Q. Appl. Catal., A: Gen. 2001, 221, 45.
[39]
Zhu, W.; Tao, F.; Chen, S.; Li, M.; Yang, Y.; Lv, G. ACS Sustain. Chem. Eng. 2019, 7, 296.
[40]
Thubsuang, U.; Chotirut, S.; Nuithitikul, K.; Payaka, A.; Manmuanpom, N.; Chaisuwan, T.; Wongkasemjit, S. J Colloid Interface Sci. 2020, 565, 96.
[41]
Maneechakr, P.; Karnjanakom, S. Energy Convers. Manage. 2017, 154, 299.
[42]
Waidmann, C. R.; DiPasquale, A. G.; Mayer, J. M. Inorg. Chem. 2010, 49, 2383.
[43]
Shetti, V. N.; Manikandan, P.; Srinivas, D.; Ratnasamy, P. J. Catal. 2003, 216, 461.
[44]
Podolean, L.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V. I.; Coman, S. M. Green Chem. 2013, 15, 3077.
[45]
Carnevali, D.; Rigamonti, M. G.; Tabanelli, T.; Patience, G. S.; Cavani, F. Appl. Catal., A: Gen. 2018, 563, 98.
[46]
Song, L.; Wang, R.; Che, L.; Jiang, Y.; Zhou, M.; Zhao, Y.; Pang, J.; Jiang, M.; Zhou, G.; Zheng, M.; Zhang, T. ACS Catal. 2021, 11, 11588.
[47]
Tachibana, Y.; Yamahata, M.; Kimura, S.; Kasuya, K.-i. ACS Sustain. Chem. Eng. 2018, 6, 10806.
[48]
Podolean, I.; Rizescu, C.; Bala, C.; Rotariu, L.; Parvulescu, V. I.; Coman, S. M.; Garcia, H. ChemSusChem. 2016, 9, 2307.
[49]
Rizescu, C.; Podolean, I.; Cojocaru, B.; Parvulescu, V. I.; Coman, S. M.; Albero, J.; Garcia, H. ChemCatChem. 2017, 9, 3314.
[50]
Tirsoaga, A.; El Fergani, M.; Parvulescu, V. I.; Coman, S. M. ACS Sustain. Chem. Eng. 2018, 6, 14292.
[51]
Xu, M.; Wang, W. F.; Wei, Y. J.; Zhu, Q. Y.; Fang, W. Y.; Zhu, C. G. Acta Chim. Sinica. 2012, 70, 87. (in Chinese)
[51]
(徐迈, 王凤武, 魏亦军, 朱其永, 方文彦, 朱传高, 化学学报, 2012, 70, 87.)
[52]
Beerthuis, R.; Rothenberg, G.; Shiju, N. R. Green Chem. 2015, 17, 1341.
[53]
Han, J. Energy Convers. Manage. 2016, 129, 75.
[54]
Xie, Q. F.; Chen, Y. M.; Huang, M. L.; Lin, B. Z. Acta Chim. Sinica. 2008, 66, 2107. (in Chinese)
[54]
(解庆范, 陈延民, 黄妙龄, 林碧洲, 化学学报, 2008, 66, 2107.)
[55]
Van de Vyver, S.; Roman-Leshkov, Y. Catal. Sci. Technol. 2013, 3, 1465.
[56]
Rahman, A.; Mupa, M.; Mahamadi, C. Catal. Lett. 2016, 146, 788.
[57]
Moudjahed, M.; Dermeche, L.; Benadji, S.; Mazari, T.; Rabia, C. J. Mol. Catal., A: Chem. 2016, 414, 72.
[58]
Luo, J.; Huang, Y.; Ding, B.; Wang, P.; Geng, X.; Zhang, J.; Wei, Y. Catalysts. 2018, 8, 121.
[59]
Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. Chem. Rev. 2018, 118, 11023.
[60]
Hamed, O.; El-Qisairi, A.; Henry, P. M. Tetrahedron Lett. 2000, 41, 3021.
[61]
Wu, D.; Chen, Z.; Jia, Z.; Shuai, L. Sci. China Chem. 2012, 55, 380.
[62]
Zhang, G.-S.; Zhu, M.-M.; Zhang, Q.; Liu, Y.-M.; He, H.-Y.; Cao, Y. Green Chem. 2016, 18, 2155.
[63]
Kang, S.; Fu, J.; Zhang, G. Renew. Sust. Energ. Rev. 2018, 94, 340.
[64]
De, S.; Saha, B.; Luque, R. Bioresour. Technol. 2015, 178, 108.
[65]
Nobbs, J. D.; Zainal, N. Z. B.; Tan, J.; Drent, E.; Stubbs, L. P.; Li, C.; Lim, S. C. Y.; Kumbang, D. G. A.; van Meurs, M. Chemistryselect. 2016, 1, 539.
[66]
Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 14001.
[67]
Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55, 11017.
[68]
Asano, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Sustain. Chem. Eng. 2016, 4, 6253.
[69]
Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55, 8013.
[70]
Delhomme, C.; Weuster-Botz, D.; Kuehn, F. E. Green Chem. 2009, 11, 13.
[71]
Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539.
[72]
Burgess, S. K.; Mikkilineni, D. S.; Yu, D. B.; Kim, D. J.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Polymer. 2014, 55, 6870.
[73]
Burgess, S. K.; Karvan, O.; Johnson, J. R.; Kriegel, R. M.; Koros, W. J. Polymer. 2014, 55, 4748.
[74]
de Jong, E.; Dam, M. A.; Sipos, L.; Gruter, G. J. M. ACS Symposium Series. 2012, 1105, 1.
[75]
Choudhary, H.; Nishimura, S.; Ebitani, K. Chem. Lett. 2012, 41, 409.
[76]
Shu, H.; Bao, Y.; Na, Y. Acta Chim. Sinica. 2022, 80, 607. (in Chinese)
[76]
(舒恒, 包义德日根, 那永, 化学学报, 2022, 80, 607.)
[77]
Zhou, C.; Deng, W.; Wan, X.; Zhang, Q.; Yang, Y.; Wang, Y. ChemCatChem. 2015, 7, 2853.
[78]
Donoeva, B.; Masoud, N.; de Jongh, P. E. ACS Catal. 2017, 7, 4581.
[79]
Cai, J.; Ma, H.; Zhang, J.; Song, Q.; Du, Z.; Huang, Y.; Xu, J. Chem-Eur. J. 2013, 19, 14215.
[80]
Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Angew. Chem. Int. Ed. 2018, 57, 8235.
[81]
Zhou, H.; Xu, H.; Liu, Y. Appl. Catal. B: Environ. 2019, 244, 965.
[82]
Ventura, M.; Aresta, M.; Dibenedetto, A. ChemSusChem. 2016, 9, 1096.
[83]
Davis, S. E.; Zope, B. N.; Davis, R. J. Green Chem. 2012, 14, 143.
[84]
Rao, K. T. V.; Rogers, J. L.; Souzanchi, S.; Dessbesell, L.; Ray, M. B.; Xu, C. ChemSusChem. 2018, 11, 3323.
[85]
Yu, H.; Kim, K.-A.; Kang, M. J.; Hwang, S. Y.; Cha, H. G. ACS Sustain. Chem. Eng. 2019, 7, 3742.
[86]
Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M.-M.; Langer, P.; Steinfeldt, N. Appl. Catal., A: Gen. 2014, 478, 107.
[87]
Megias-Sayago, C.; Chakarova, K.; Penkova, A.; Lolli, A.; Ivanova, S.; Albonetti, S.; Cavani, F.; Antonio Odriozola, J. ACS Catal. 2018, 8, 11154.
[88]
Yi, G.; Teong, S. P.; Zhang, Y. Green Chem. 2016, 18, 979.
[89]
Hayashi, E.; Komanoya, T.; Kamata, K.; Hara, M. ChemSusChem. 2017, 10, 654.
[90]
Siankevich, S.; Savoglidis, G.; Fei, Z.; Laurenczy, G.; Alexander, D. T. L.; Yan, N.; Dyson, P. J. J. Catal. 2014, 315, 67.
[91]
Gupta, N. K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Green Chem. 2011, 13, 824.
[92]
Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. ACS Catal. 2014, 4, 2175.
[93]
Ke, C.; Li, M.; Fan, G.; Yang, L.; Li, F. Chem-Asian J. 2018, 13, 2714.
[94]
Antonyraj, C. A.; Nhan Thanh Thien, H.; Lee, K. W.; Kim, Y. J.; Shin, S.; Shin, J. S.; Cho, J. K. J. Chem. Sci. 2018, 130, 156.
[95]
Xia, H.; An, J.; Hong, M.; Xu, S.; Zhang, L.; Zuo, S. Catal. Today. 2019, 319, 113.
[96]
Kim, M.; Su, Y. Q.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Angew. Chem. Int. Ed. 2018, 57, 8235.
[97]
Liu, Y.; Ma, H.-Y.; Lei, D.; Lou, L.-L.; Liu, S.; Zhou, W.; Wang, G.-C.; Yu, K. ACS Catal. 2019, 9, 8306.
[98]
Li, Q.; Wang, H.; Tian, Z.; Weng, Y.; Wang, C.; Ma, J.; Zhu, C.; Li, W.; Liu, Q.; Ma, L. Catal. Sci. Technol. 2019, 9, 1570.
[99]
Schade, O. R.; Kalz, K. F.; Neukum, D.; Kleist, W.; Grunwaldt, J. D. Green Chem. 2018, 20, 3530.
[100]
Chen, H.; Shen, J.; Chen, K.; Qin, Y.; Lu, X.; Ouyang, P.; Fu, J. Appl. Catal., A: Gen. 2018, 555, 98.
[101]
Han, X.; Li, C.; Liu, X.; Xia, Q.; Wang, Y. Green Chem. 2017, 19, 996.
[102]
Liu, H.; Tang, X.; Zeng, X.; Sun, Y.; Ke, X.; Li, T.; Zhang, J.; Lin, L. Green Energ. Environ. 2022, 7, 900.
[103]
Nie, J. F.; Liu, H. C. J. Catal. 2014, 316, 57.
[104]
Yan, Y.; Li, K.; Zhao, J.; Cai, W.; Yang, Y.; Lee, J.-M. Appl. Catal. B: Environ. 2017, 207, 358.
[105]
Liu, X.; Luo, Y.; Ma, H.; Zhang, S. J.; Che, P. H.; Zhang, M. Y.; Gao, J.; Xu, J. Angew. Chem. Int. Ed. 2021, 60, 18103.
[106]
Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. J. Am. Chem. Soc. 2019, 141, 890.
[107]
Liu, X. Y.; Zhang, M.; Li, Z. H. ACS Sustain. Chem. Eng. 2020, 8, 4801.
[108]
Ventura, M.; Nocito, F.; de Giglio, E.; Cometa, S.; Altomare, A.; Dibenedetto, A. Green Chem. 2018, 20, 3921.
[109]
Gao, T.; Yin, Y.; Zhu, G.; Cao, Q.; Fang, W. Catal. Today. 2020, 355, 252.
[110]
Gomes, M.; Gandini, A.; Silvestre, A. J. D.; Reis, B. J. Polym. Sci. Pol. Chem. 2011, 49, 3759.
[111]
Gruter, G.-J. M.; Sipos, L.; Dam, M. A. Comb. Chem. High T. Scr. 2012, 15, 180.
[112]
Knoop, R. J. I.; Vogelzang, W.; van Haveren, J.; van Es, D. S. J. Polym. Sci. Pol. Chem. 2013, 51, 4191.
[113]
Terzopoulou, Z.; Tsanaktsis, V.; Nerantzaki, M.; Achilias, D. S.; Vaimakis, T.; Papageorgiou, G. Z.; Bikiaris, D. N. J. Anal. Appl. Pyrolysis. 2016, 117, 162.
[114]
Pfister, D.; Storti, G.; Tancini, F.; Costa, L. I.; Morbidelli, M. Macromol. Chem. Phys. 2015, 216, 2141.
[115]
Wang, X. S.; Wang, G. Y. Fine Chemicals. 2019, 36, 2341. (in Chinese)
[115]
(王贤松, 王公应, 精细化工, 2019, 36, 2341.)
Outlines

/