Review

Recent Advance of Machine Learning in Selecting New Materials

  • Xingyi Qi ,
  • Yaofeng Hu ,
  • Ruoyu Wang ,
  • Yaqing Yang ,
  • Yufei Zhao
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
Contributed equally to this work

Received date: 2022-11-01

  Online published: 2022-12-26

Supported by

National Natural Science Foundation of China(21922801); National Natural Science Foundation of China(22090032); National Natural Science Foundation of China(22090030); Natural Science Foundation of Beijing(2202036)

Abstract

The new material industry is the foundation of technological change in many related fields, and also the forerunner of the development of new energy, aerospace, electronic information and other high-tech industries. Traditional means cannot meet the development needs of modern society because of disadvantages such as high cost, low efficiency and long commercial cycle. In recent years, with the application of big data combined with artificial intelligence in a deeper degree, data-driven machine learning has made great progress in the design, screening and performance prediction of new materials, which has greatly promoted the development and application of new materials. In this review, the basic process of machine learning, the algorithms commonly used in materials science and the relevant materials database are summarized. This review focuses on the application of machine learning in different functions, as well as the performance prediction in the fields of catalyst materials, lithium-ion batteries, semiconductor materials and alloy materials, presenting the latest progress in materials development. Finally, machine learning in the application of new materials are analyzed and prospected.

Cite this article

Xingyi Qi , Yaofeng Hu , Ruoyu Wang , Yaqing Yang , Yufei Zhao . Recent Advance of Machine Learning in Selecting New Materials[J]. Acta Chimica Sinica, 2023 , 81(2) : 158 -174 . DOI: 10.6023/A22110446

References

[1]
Correa-Baena, J.-P.; Hippalgaonkar, K.; van Duren, J.; Jaffer, S.; Chandrasekhar, V. R.; Stevanovic, V.; Wadia, C.; Guha, S.; Buonassisi, T. Joule. 2018, 2, 1410.
[2]
Feng, N.; Wang, H. J.; Li, M. Inf. Sci. 2014, 256, 57.
[3]
Chen, A.; Zhang, X.; Zhou, Z. InfoMat. 2020, 2, 553.
[4]
Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Npj Comput. Mater. 2017, 3, 1.
[5]
Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador- Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A. J. Phys. Chem. Lett. 2011, 2, 2241.
[6]
Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. Npj Comput. Mater. 2015, 1, 1.
[7]
Curtarolo, S.; Setyawan, W.; Hart, G. L.; Jahnatek, M.; Chepulskii, R. V.; Taylor, R. H.; Wang, S.; Xue, J.; Yang, K.; Levy, O. Comput. Mater. Sci. 2012, 58, 218.
[8]
Sun, Z. T.; Li, Z. Z.; Cheng, G. J.; Xu, Q. C.; Hou, Z. F.; Yin, W. J. Chin. Sci. Bull. 2019, 64, 3270. (in Chinese)
[8]
(孙中体, 李珍珠, 程观剑, 徐其琛, 侯柱锋, 尹万健, 科学通报, 2019, 64, 3270.)
[9]
Suh, C.; Fare, C.; Warren, J. A.; Pyzer-Knapp, E. O. Annu. Rev. Mater. Res. 2020, 50, 1.
[10]
Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature. 2018, 559, 547.
[11]
Zhu, B. Y.; Wu, R. L.; Yu, X. Acta Chim. Sinica. 2020, 78, 1366. (in Chinese)
[11]
(朱博阳, 吴睿龙, 于曦, 化学学报, 2020, 78, 1366.)
[12]
Sun, Y. M.; Liao, H. B.; Wang, J. R.; Chen, B.; Sun, S. N.; Ong, S. J. H.; Xi, S. B.; Diao, C. Z.; Du, Y. H.; Wang, J. O.; Breese, M. B. H.; Li, S. Z.; Zhang, H.; Xu, Z. C. J. Nat. Catal. 2020, 3, 554.
[13]
Deringer, V. L.; Bernstein, N.; Csanyi, G.; Ben Mahmoud, C.; Ceriotti, M.; Wilson, M.; Drabold, D. A.; Elliott, S. R. Nature. 2021, 589, 59.
[14]
Cai, C. Z.; Li, L. F.; Deng, X. M.; Li, S. H.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica. 2020, 78, 427. (in Chinese)
[14]
(蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.)
[15]
Sheng, Y.; Wu, Y. S.; Yang, J.; Lu, W. C.; Villars, P.; Zhang, W. Q. Npj Comput. Mater. 2020, 6, 1.
[16]
Luo, H.; Sohn, S. S.; Lu, W. J.; Li, L. L.; Li, X. G.; Soundararajan, C. K.; Krieger, W.; Li, Z. M.; Raabe, D. Nat. Commun. 2020, 11, 1.
[17]
Lin, H.; Zheng, J. X.; Lin, Y.; Pan, F. Energy. Stor. Sci. Technol. 2017, 6, 990. (in Chinese)
[17]
(林海, 郑家新, 林原, 潘锋, 储能科学与技术, 2017, 6, 990.)
[18]
Pei, J. F.; Cai, C. Z.; Zhu, Y. M.; Yan, B. Macromol. Theory Simul. 2013, 22, 52.
[19]
Juan, Y.; Dai, Y.; Yang, Y.; Zhang, J. J. Mater. Sci. Technol. 2021, 79, 178.
[20]
Wang, H.; Ji, Y.; Li, Y. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 10, e1421.
[21]
Mi, X. X.; Tang, A. T.; Zhu, Y. C.; Kang, L.; Pan, F. S. Mater. Rep. 2021, 15, 1. (in Chinese)
[21]
(米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生, 材料导报, 2021, 15, 1.)
[22]
Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S. V. ICCUBEA. 2016, pp. 1-7.
[23]
Diamantopoulou, M. J.; Papamichail, D. M.; Antonopoulos, V. Z. Oper. Res. 2005, 5, 115.
[24]
Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291.
[25]
Fang, S.; Wang, M.; Qi, W.; Zheng, F. Comput. Mater. Sci. 2008, 44, 647.
[26]
Wei, J.; Chu, X.; Sun, X. Y.; Xu, K.; Deng, H. X.; Chen, J.; Wei, Z.; Lei, M. InfoMat. 2019, 1, 338.
[27]
Kalidindi, S. R.; De Graef, M. Annu. Rev. Mater. Res. 2015, 45, 171.
[28]
Liu, Y.; Zhao, T.; Ju, W.; Shi, S. J. Materiomics. 2017, 3, 159.
[29]
Liu, Y.; Niu, C.; Wang, Z.; Gan, Y.; Zhu, Y.; Sun, S.; Shen, T. J. Mater. Sci. Technol. 2020, 57, 113.
[30]
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X, D.; Li, S. Acta Chim. Sinica. 2019, 77, 323. (in Chinese)
[30]
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[31]
Lian, Z.; Yang, M.; Jan, F.; Li, B. J. Phys. Chem. Lett. 2021, 12, 7053.
[32]
Zhang, Q.; Zheng, Y. J.; Sun, W.; Ou, Z.; Odunmbaku, O.; Li, M.; Chen, S.; Zhou, Y.; Li, J.; Qin, B.; Sun, K. Adv. Sci. 2022, 9, 2104742.
[33]
Wang, X.; Gao, Y.; Krzystowczyk, E.; Iftikhar, S.; Dou, J.; Cai, R.; Wang, H.; Ruan, C.; Ye, S.; Li, F. Energy Environ. Sci. 2022, 15, 1512.
[34]
Jie, J.; Hu, Z.; Qian, G.; Weng, M.; Li, S.; Li, S.; Hu, M.; Chen, D.; Xiao, W.; Zheng, J.; Wang, L.; Pan, F. Sci. Bull. 2019, 64, 612.
[35]
Faber, F.; Lindmaa, A.; von Lilienfeld, O. A.; Armiento, R. Int. J. Quantum. Chem. 2015, 115, 1094.
[36]
Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4, 2444.
[37]
Bartel, C. J.; Trewartha, A.; Wang, Q.; Dunn, A.; Jain, A.; Ceder, G. Npj Comput. Mater. 2020, 6, 1.
[38]
Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Nat Commun. 2018, 9, 1.
[39]
Rajan, A. C.; Mishra, A.; Satsangi, S.; Vaish, R.; Mizuseki, H.; Lee, K.-R.; Singh, A. K. Chem. Mater. 2018, 30, 4031.
[40]
Stanev, V.; Oses, C.; Kusne, A. G.; Rodriguez, E.; Paglione, J.; Curtarolo, S; Takeuchi, I. Npj Comput. Mater. 2018, 4, 1.
[41]
Owolabi, T. O.; Akande, K. O.; Olatunji, S. O. Adv. Phys. Theor. Appl. 2014, 35, 12.
[42]
Xie, S.; Stewart, G.; Hamlin, J.; Hirschfeld, P.; Hennig, R. Phys. Rev. B. 2019, 100, 174513.
[43]
Allen, P. B.; Dynes, R. Phys. Rev. B. 1975, 12, 905.
[44]
Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. Sci. Adv. 2019, 5, eaav0693.
[45]
Chen, X.; Chen, D.; Weng, M.; Jiang, Y.; Wei, G. W.; Pan, F. J. Phys. Chem. Lett. 2020, 11, 4392.
[46]
Timoshenko, J.; Lu, D.; Lin, Y.; Frenkel, A. I. J. Phys. Chem. Lett. 2017, 8, 5091.
[47]
Ou, Z.; Liu, C.; Yao, L.; Chen, Q. Acc. Mater. Res. 2020, 1, 41.
[48]
LeCun, Y.; Bengio, Y.; Hinton, G. Nature. 2015, 521, 436.
[49]
Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X.; Sang, X.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. ACS Nano. 2017, 11, 12742.
[50]
Kwoen, J.; Arakawa, Y. Cryst. Growth Des. 2020, 20, 5289.
[51]
Nada, H. ACS Omega. 2018, 3, 5789.
[52]
Fortunato, M. E.; Coley, C. W.; Barnes, B. C.; Jensen, K. F. J. Chem. Inf. Model. 2020, 60, 3398.
[53]
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. J. Chem. Theory Comput. 2015, 11, 2087.
[54]
Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336.
[55]
Zhang, P.; Shen, L.; Yang, W. J. Phys. Chem. B. 2018, 123, 901.
[56]
Dral, P. O.; von Lilienfeld, O. A.; Thiel, W. J. Chem. Theory Comput. 2015, 11, 2120.
[57]
Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 1.
[58]
Chandrasekaran, A.; Kamal, D.; Batra, R.; Kim, C.; Chen, L.; Ramprasad, R. Npj Comput. Mater. 2019, 5, 1.
[59]
Zhang, Z.; Zhang, Y.; Wang, J.; Xu, J.; Long, R. J. Phys. Chem. Lett. 2021, 12, 835.
[60]
Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2013, 9, 1838.
[61]
Shang, C.; Zhang, X.-J.; Liu, Z.-P. Phys. Chem. Chem. Phys. 2014, 16, 17845.
[62]
Huang, S.-D.; Shang, C.; Zhang, X.-J.; Liu, Z.-P. Chem. Sci. 2017, 8, 6327.
[63]
Huang, S.-D.; Shang, C.; Kang, P.-L.; Liu, Z.-P. Chem. Sci. 2018, 9, 8644.
[64]
Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2019, 9, e1415.
[65]
Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
[66]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. J. Comput. Chem. 2010, 31, 671.
[67]
Wang, H.; Zhang, L.; Han, J.; Weinan, E. Comput. Phys. Commun. 2018, 228, 178.
[68]
Yang, S. X. World. Nonferrous. Met. 2020, 14, 154. (in Chinese)
[68]
(杨素心, 世界有色金属, 2020, 14, 154.)
[69]
Goldschmidt, V. M. Naturwiss. 1926, 14, 477.
[70]
Li, Z.; Xu, Q.; Sun, Q.; Hou, Z.; Yin, W. J. Adv. Funct. Mater. 2019, 29, 1807280.
[71]
Weng, B.; Song, Z.; Zhu, R.; Yan, Q.; Sun, Q.; Grice, C. G.; Yan, Y.; Yin, W. J. Nat Commun. 2020, 11, 3513.
[72]
Feng, H.-J.; Wu, K.; Deng, Z.-Y. Cell Rep. Phys. Sci. 2020, 1, 100179.
[73]
Kirman, J.; Johnston, A.; Kuntz, D. A.; Askerka, M.; Gao, Y.; Todorovi?, P.; Ma, D.; Privé, G. G; Sargent, E. H. Matter. 2020, 2, 938.
[74]
He, Y.; Cubuk, E. D.; Allendorf, M. D.; Reed, E. J. J. Phys. Chem. Lett. 2018, 9, 4562.
[75]
Gordillo, M. A.; Benavides, P. A.; Panda, D. K.; Saha, S. ACS Appl. Mater. Interfaces. 2020, 12, 12955.
[76]
Mannodi-Kanakkithodi, A.; Toriyama, M. Y.; Sen, F. G.; Davis, M. J.; Klie, R. F.; Chan, M. K. Npj Comput. Mater. 2020, 6, 1.
[77]
Chen, G.; Shen, Z.; Iyer, A.; Ghumman, U. F.; Tang, S.; Bi, J.; Chen, W.; Li, Y. Polymers. 2020, 12, 163.
[78]
Gormley, A. J.; Webb, M. A. Nat. Rev. Mater. 2021, 6, 642.
[79]
Shmilovich, K.; Mansbach, R. A.; Sidky, H.; Dunne, O. E.; Panda, S. S.; Tovar, J. D.; Ferguson, A. L. J. Phys. Chem. B. 2020, 124, 3873.
[80]
Yan, C.; Feng, X.; Li, G. ACS Appl. Mater. Interfaces. 2021, 13, 60508.
[81]
Webb, M. A.; Jackson, N. E.; Gil, P. S.; de Pablo, J. J. Sci. Adv. 2020, 6, eabc6216.
[82]
Giuntoli, A.; Hansoge, N. K.; van Beek, A.; Meng, Z.; Chen, W.; Keten, S. npj Comput. Mater. 2021, 7, 1.
[83]
Writer, B.; Batteries, L.-I. A Machine-generated Summary of Current Research. Springer, Cham, Switzerland, 2019.
[84]
Ceder, G. MRS bull. 2010, 35, 693.
[85]
Li, W.; Zhu, J.; Xia, Y.; Gorji, M. B.; Wierzbicki, T. Joule. 2019, 3, 2703.
[86]
Severson, K. A.; Attia, P. M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M. H.; Aykol, M.; Herring, P. K.; Fraggedakis, D.; Bazant, M. Z.; Harris, S. J.; Chueh, W. C.; Braatz, R. D. Nat. Energy. 2019, 4, 383.
[87]
Homma, K.; Liu, Y.; Sumita, M.; Tamura, R.; Fushimi, N.; Iwata, J.; Tsuda, K.; Kaneta, C. J. Phys. Chem. C. 2020, 124, 12865.
[88]
Dixit, M. B.; Verma, A.; Zaman, W.; Zhong, X.; Kenesei, P.; Park, J. S.; Almer, J.; Mukherjee, P. P.; Hatzell, K. B. ACS Appl. Energy Mater. 2020, 3, 9534.
[89]
Panosetti, C.; Annies, S. B.; Grosu, C.; Seidlmayer, S.; Scheurer, C. J. Phys. Chem. A. 2021, 125, 691.
[90]
Wang, Y.; Xie, T.; France-Lanord, A.; Berkley, A.; Johnson, J. A.; Shao-Horn, Y.; Grossman, J. C. Chem. Mater. 2020, 32, 4144.
[91]
Jiang, Z.; Li, J.; Yang, Y.; Mu, L.; Wei, C.; Yu, X.; Pianetta, P.; Zhao, K.; Cloetens, P.; Lin, F. Nat. Commun. 2020, 11, 1.
[92]
Sendek, A. D.; Antoniuk, E. R.; Cubuk, E. D.; Ransom, B.; Francisco, B. E.; Buettner-Garrett, J.; Cui, Y.; Reed, E. J. ACS Appl. Mater. Interfaces. 2020, 12, 37957.
[93]
Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J. Chem. Mater. 2018, 31, 342.
[94]
Wang, C.; Aoyagi, K.; Wisesa, P.; Mueller, T. Chem. Mater. 2020, 32, 3741.
[95]
Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K.-i. ACS Catal. 2019, 10, 2260.
[96]
Kitchin, J. R. Nat. Catal. 2018, 1, 230.
[97]
Sun, Z.; Yin, H.; Liu, K.; Cheng, S.; Li, G. K.; Kawi, S.; Zhao, H.; Jia, G.; Yin, Z. SmartMat. 2022, 3, 68.
[98]
Chen, A.; Zhang, X.; Chen, L.; Yao, S.; Zhou, Z. J. Phys. Chem. C. 2020, 124, 22471.
[99]
Tran, K.; Ulissi, Z. W. Nat. Catal. 2018, 1, 696.
[100]
Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P. Nature. 2020, 581, 178.
[101]
Batchelor, T. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. Joule. 2019, 3, 834.
[102]
Liu, J.; Liu, H.; Chen, H.; Du, X.; Zhang, B.; Hong, Z.; Sun, S.; Wang, W. Adv. Sci. 2020, 7, 1901614.
[103]
Fujishima, A.; Honda, K. Nature. 1972, 238, 37.
[104]
Zhang, Y.; Xu, X. ACS Omega. 2020, 5, 15344.
[105]
Can, E.; Yildirim, R. Appl. Catal., B. 2019, 242, 267.
[106]
Bai, Y.; Wilbraham, L.; Slater, B. J.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. J. Am. Chem. Soc. 2019, 141, 9063.
[107]
Corma, A.; Moliner, M.; Serra, J. M.; Serna, P.; Díaz-Caba?as, M. J.; Baumes, L. A. Chem. Mater. 2006, 18, 3287.
[108]
Muraoka, K.; Sada, Y.; Miyazaki, D.; Chaikittisilp, W.; Okubo, T. Nat. Commun. 2019, 10, 1.
[109]
Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; G?adysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; Reimer, J. A.; Navarro, J. A. R.; Woo, T. K.; Garcia, S.; Stylianou, K. C.; Smit, B. Nature. 2019, 576, 253.
[110]
Ma, S.; Liu, Z.-P. ACS Catal. 2020, 10, 13213.
[111]
Ma, S. C.; Liu, Z.-P. Chem. Ind. Eng. Prog. 2020, 39, 3433. (in Chinese)
[111]
(马思聪, 刘智攀, 化工进展, 2020, 39, 3433.)
[112]
Deng, C.; Su, Y.; Li, F.; Shen, W.; Chen, Z.; Tang, Q. J. Mater. Chem. A. 2020, 8, 24563.
[113]
Ishioka, S.; Fujiwara, A.; Nakanowatari, S.; Takahashi, L.; Taniike, T.; Takahashi, K. ACS Catal. 2022, 12, 11541.
[114]
Yang, Z.; Gao, W. Adv. Sci. 2022, 9, 2106043.
[115]
J?ger, M. O.; Morooka, E. V.; Canova, F. F.; Himanen, L.; Foster, A. S. Npj Comput. Mater. 2018, 4, 1.
[116]
Ulissi, Z. W.; Singh, A. R.; Tsai, C.; N?rskov, J. K. J. Phys. Chem. Lett. 2016, 7, 3931.
[117]
Takigawa, I.; Shimizu, K.-i.; Tsuda, K.; Takakusagi, S. RSC Adv. 2016, 6, 52587.
[118]
Zhu, Q.; Zhang, F.; Huang, Y.; Xiao, H.; Zhao, L.; Zhang, X.; Song, T.; Tang, X.; Li, X.; He, G.; Chong, B.; Zhou, J.; Zhang, Y.; Zhang, B.; Cao, J.; Luo, M.; Wang, S.; Ye, G.; Zhang, W.; Chen, X.; Cong, S.; Zhou, D.; Li, H.; Li, J.; Zou, G.; Shang, W.; Jiang, J.; Luo, Y. Natl. Sci. Rev. 2022, nwac190.
[119]
Balachandran, P. V.; Young, J.; Lookman, T.; Rondinelli, J. M. Nat. Commun. 2017, 8, 1.
[120]
Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Nature. 2021, 590, 89.
[121]
Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature. 2016, 533, 73.
[122]
Wang, A. Y.-T.; Murdock, R. J.; Kauwe, S. K.; Oliynyk, A. O.; Gurlo, A.; Brgoch, J.; Persson, K. A.; Sparks, T. D. Chem. Mater. 2020, 32, 4954.
[123]
Krishnamurthy, D.; Weiland, H.; Barati Farimani, A.; Antono, E.; Green, J.; Viswanathan, V. ACS Energy Lett. 2018, 4, 187.
[124]
De Luna, P.; Wei, J.; Bengio, Y.; Aspuru-Guzik, A.; Sargent, E. Use machine learning to find energy materials. Nature Publishing Group, 2017.
[125]
Schmidt, J.; Marques, M. R.; Botti, S.; Marques, M. A. npj Comput. Mater. 2019, 5, 1.
[126]
Zhang, Y.; Ling, C. Npj Comput. Mater. 2018, 4, 1.
[127]
Trivedi, H.; Shvartsman, V. V.; Medeiros, M. S.; Pullar, R. C.; Lupascu, D. C. Npj Comput. Mater. 2018, 4, 1.
[128]
Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Acc. Chem. Res. 2016, 49, 231.
[129]
Jankowski, N.; Duch, W.; Grabczewski, K. Meta-learning in computational intelligence. Springer, 2011.
[130]
Graves, A.; Wayne, G.; Danihelka, I. arXiv preprint arXiv:1410.5401. 2014.
[131]
Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science. 2015, 350, 1332.
[132]
Kauwe, S. K.; Welker, T.; Sparks, T. D. Integr. Mater. Manuf. I. 2020, 9, 213.
[133]
Ouyang, R.; Ahmetcik, E.; Carbogno, C.; Scheffler, M.; Ghiringhelli, L. M. J. Phys. Mater. 2019, 2, 024002.
[134]
Jackson, N. E.; Bowen, A. S.; Antony, L. W.; Webb, M. A.; Vishwanath, V.; de Pablo, J. J. Sci. Adv. 2019, 5, eaav1190.
[135]
Sutton, C.; Boley, M.; Ghiringhelli, L. M.; Rupp, M.; Vreeken, J.; Scheffler, M. Nat. Commun. 2020, 11, 1.
[136]
Wu, W.; Sun, Q. Sci. China : Phys., Mech. Astron. 2018, 48, 58. (in Chinese)
[136]
(吴炜, 孙强, 中国科学: 物理学力学天文学, 2018, 48, 58.)
[137]
Wu, S.; Kondo, Y.; Kakimoto, M.-a.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J. Npj Comput. Mater. 2019, 5, 1.
[138]
Jia, W.; Wang, H.; Chen, M.; Lu, D.; Liu, J.; Lin, L.; Car, R.; Zhang, L. arXiv preprint arXiv:2005.00223. 2020, 1.
Outlines

/