Perspective

Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics

  • Zheng Yin ,
  • Yingbo Zhao ,
  • Minghua Zeng
Expand
  • a Chemistry and Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004
    b College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021
    c School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210

Received date: 2022-12-23

  Online published: 2023-02-16

Supported by

National Natural Science Foundation of China(22171075); BaGui Talent Program of Guangxi Province(2019AC26001); Young Teachers Grants from the Fok Ying-Tong Education Foundation(171110); Science and Technology Commission of Shanghai Municipality(22QC1401500); Science and Technology Commission of Shanghai Municipality(21DZ2260400)

Abstract

The emerging metal-organic framework (MOF) glass, that is brand-new comer to the traditional glass and noncrystalline physics world, was viewed as the Holy Grail of future porous chemistry and the key direction of MOF derived functional materials. The known examples of MOF glass are extremely scarce, prepared mainly through the traditional melt-quenching method. As porous framework constructed from metal ions/clusters and organic linkers through coordinative bonds, the majority of MOFs can not reach high-temperature melt state, which prevents MOF glass formation. Facing these challenges, here we summarized the development history and latest advance of MOF glass. A new strategy of sequential perturbation based on dynamic chemistry was presented to widely prepare MOF glass. How to discover more MOF glasses, expand their properties and functions, and clarify their nature, is the new interdisciplinary frontier from dynamic chemistry to material science and noncrystalline physics. This topic also provides a range of new research opportunities, including the design and regulation of MOF glass based on reticular and dynamic chemistry, exploring new functions of MOF glass beyond its crystalline counterpart, and effectively responding to the scientific challenges in noncrystalline physics including the glass nature, based on the solid-solid structure transformation and relevance between crystalline and glassy MOFs.

Cite this article

Zheng Yin , Yingbo Zhao , Minghua Zeng . Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics[J]. Acta Chimica Sinica, 2023 , 81(3) : 246 -252 . DOI: 10.6023/A22120508

References

[1]
Special issue for Science's 125th anniversary. Science 2005, 309, 78.
[2]
Wang W. H. Prog. Phys. 2013, 33, 177. (in Chinese)
[2]
(汪卫华, 物理学进展, 2013, 33, 177.)
[3]
Zhang Q. Y.; Wang W. C.; Jiang Z. H. Chin. Sci. Bull. 2016, 13, 1407. (in Chinese)
[3]
(张勤远, 王伟超, 姜中宏, 科学通报, 2016, 13, 1407.)
[4]
Debenedetti P. G.; Stillinger F. H. Nature 2001, 410, 259.
[5]
Li M. X.; Liu Y. H.; Wang W. H.; Zhao S. F.; Lu Z.; Hirata A.; Wen P.; Bai H. Y.; Chen M.; Schroers J. Nature 2019, 569, 99.
[6]
Zachariasen W. H. J. Am. Chem. Soc. 1932, 54, 3841.
[7]
Flory P. J. J. Chem. Phys. 1949, 17, 303.
[8]
Bernal J. D. Nature 1960, 185, 68.
[9]
Chen X. M.; Zhang J. P. Metal-Organic Framework Materials, Chemical Industry Press, Beijing, 2017. (in Chinese)
[9]
(陈小明, 张杰鹏, 金属-有机框架材料, 化学工业出版社, 北京, 2017.)
[10]
Furukawa H.; Cordova K. E.; O'Keeffe M.; Yaghi O. M. Science 2013, 341, 974.
[11]
Kitagawa S. Acc. Chem. Res. 2017, 50, 514.
[12]
Bennett T. D.; Goodwin A. L.; Dove M. T.; Keen D. A.; Tucker M. G.; Barney E. R.; Soper A. K.; Bithell E. G.; Tan J. C.; Cheetham A. K. Phys. Rev. Lett. 2010, 104, 115503.
[13]
Bennett T. D.; Yue Y.; Li P.; Qiao A.; Tao H.; Greaves N. G.; Richards T.; Lampronti G. I.; Redfern S. A. T.; Blanc F.; Farha O. K.; Hupp J. T.; Cheetharm A. K.; Keen D. A. J. Am. Chem. Soc. 2016, 138, 3484.
[14]
Gaillac R.; Pullumbi P.; Beyer K. A.; Chapman K. W.; Keen D. A.; Bennett T. D.; Coudert F. X. Nat. Mater. 2017, 16, 1149.
[15]
Widmer R. N.; Lampronti G. I.; Anzellini S.; Gaillac R.; Farsang S.; Zhou C.; Belenguer A. M.; Wilson C. W.; Palmer H.; Kleppe A. K.; Wharmby M. T.; Yu X.; Cohen S. M.; Telfer S. G.; Redfern S. A. T.; Coudert F. X.; MacLeod S. G.; Bennett T. D. Nat. Mater. 2019, 18, 370.
[16]
Longley L.; Calahoo C.; Limbach R.; Xia Y.; Tuffnell J. M.; Sapnik A. F.; Thorne M. F.; Keeble D. S.; Keen D. A.; Wondraczek L.; Bennett T. D. Nat. Commun. 2020, 11, 5800.
[17]
Shaw B. K.; Hughes A. R.; Ducamp M.; Moss S.; Debnath A.; Sapnik A. F.; Thorne M. F.; McHugh L. N.; Pugliese A.; Keeble D. S.; Chater P.; Bermudez-Garcia J. M.; Moya X.; Saha S. K.; Keen D. A.; Coudert F.-X.; Blanc F.; Bennett T. D. Nat. Chem. 2021, 13, 778.
[18]
Bennett T. D.; Tan J. C.; Yue Y. Z.; Baxter E.; Ducati C.; Terrill N. J.; Yeung H. H. M.; Zhou Z. F.; Chen W. L.; Henke S.; Cheetham A. K.; Greaves G. N. Nat. Commun. 2015, 6, 8079.
[19]
Greaves G. N. In Springer Handbook of Glass, Eds.: Musgraves, J. D.; Hu, J.; Calvez, L., Springer International Publishing, Cham, 2019, pp. 719-770.
[20]
Qiao A.; Bennett T. D.; Tao H. Z.; Krajnc A.; Mali G.; Doherty C. M.; Thornton A. W.; Mauro J. C.; Greaves G. N.; Yue Y. Z. Sci. Adv. 2018, 4, 6827.
[21]
Zheng Q.; Zhang Y.; Montazerian M.; Gulbiten O.; Mauro J. C.; Zanotto E. D.; Yue Y. Chem. Rev. 2019, 119, 7848.
[22]
Madsen R. S. K.; Qiao A.; Sen J.; Hung I.; Chen K.; Gan Z.; Sen S.; Yue Y. Science 2020, 367, 1473.
[23]
Yan J.; Gao C.; Qi S.; Jiang Z.; Jensen L. R.; Zhan H.; Zhang Y.; Yue Y. Nano Energy 2022, 103, 107779.
[24]
Gao C.; Jiang Z.; Qi S.; Wang P.; Jensen L. R.; Johansen M.; Christensen C. K.; Zhang Y.; Ravnsbaek D. B.; Yue Y. Adv. Mater. 2022, 34, 2110048.
[25]
Horike S.; Umeyama D.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2012, 134, 7612.
[26]
Umeyama D.; Horike S.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2015, 137, 864.
[27]
Ogawa T.; Takahashi K.; Kurihara T.; Nagarkar S. S.; Ohara K.; Nishiyama Y.; Horike S. Chem. Mater. 2022, 34, 5832.
[28]
Zhao Y. B.; Lee S. Y.; Becknell N.; Yaghi O. M.; Angell C. A. J. Am. Chem. Soc. 2016, 138, 10818.
[29]
Hou J.; Chen P.; Shukla A.; Krajnc A.; Wang T.; Li X.; Doasa R.; Tizei L. H. G.; Chan B.; Johnstone D. N.; Lin R.; Schulli T. U.; Martens I.; Appadoo D.; Ari M. S.; Wang Z.; Wei T.; Lo S.-C.; Lu M.; Li S.; Namdas E. B.; Mali G.; Cheetham A. K.; Collins S. M.; Chen V.; Wang L.; Bennett T. D. Science 2021, 374, 621.
[30]
Lin R.; Li X.; Krajnc A.; Li Z.; Li M.; Wang W.; Zhuang L.; Smart S.; Zhu Z.; Appadoo D.; Harmer J. R.; Wang Z.; Buzanich A. G.; Beyer S.; Wang L.; Mali G.; Bennett T. D.; Chen V.; Hou J. Angew. Chem. Int. Ed. 2022, 61, e202112880.
[31]
Ali M. A.; Ren J.; Zhao T.; Liu X.; Hua Y.; Yue Y.; Qiu J. ACS Omega 2019, 4, 12081.
[32]
Ali M. A.; Liu X.; Li Y.; Ren J.; Qiu J. Inorg. Chem. 2020, 59, 8380.
[33]
Sun K.; Tan D.; Fang X.; Xia X.; Lin D.; Song J.; Lin Y.; Liu Z.; Gu M.; Yue Y.; Qiu J. Science 2022, 375, 307.
[34]
Yin Z.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. Sci. Bull. 2020, 65, 1432.
[35]
Yin Z.; Zhao Y.; Wan S.; Yang J.; Shi Z.; Peng S.-X.; Chen M.-Z.; Xie T.-Y.; Zeng T.-W.; Yamamuro O.; Nirei M.; Akiba H.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. J. Am. Chem. Soc. 2022, 144, 13021.
[36]
Peng S.-X.; Yin Z.; Zhang T.; Yang Q.; Yu H.-B.; Zeng M.-H. J. Chem. Phys. 2022, 157, 104501.
[37]
Ma N.; Horike S. Chem. Rev. 2022, 122, 4163.
[38]
Nozari V.; Calahoo C.; Tuffnell J. M.; Keen D. A.; Bennett T. D.; Wondraczek L. Nat. Commun. 2021, 12, 5703.
[39]
Thorne M. F.; Gomez M. L. R.; Bumstead A. M.; Li S.; Bennett T. D. Green Chem. 2020, 22, 2505.
[40]
Li S.; Limbach R.; Longley L.; Shirzadi A. A.; Walmsley J. C.; Johnstone D. N.; Midgley P. A.; Wondraczek L.; Bennett T. D. J. Am. Chem. Soc. 2019, 141, 1027.
[41]
To T.; Sorensen S. S.; Stepniewska M.; Qiao A.; Jensen L. R.; Bauchy M.; Yue Y.; Smedskjaer M. M. Nat. Commun. 2020, 11, 2593.
[42]
Widmer R. N.; Bumstead A. M.; Jain M.; Bennett T. D.; Michler J. J. Am. Chem. Soc. 2021, 143, 20717.
[43]
Zhou C.; Longley L.; Krajnc A.; Smales G. J.; Qiao A.; Erucar I.; Doherty C. M.; Thornton A. W.; Hill A. J.; Ashling C. W.; Qazvini O. T.; Lee S. J.; Chater P. A.; Terrill N. J.; Smith A. J.; Yue Y.; Mali G.; Keen D. A.; Telfer S. G.; Bennett T. D. Nat. Commun. 2018, 9, 5042.
[44]
Frentzel-Beyme L.; Kloss M.; Pallach R.; Salamon S.; Moldenhauer H.; Landers J.; Wende H.; Debus J.; Henke S. J. Mater. Chem. A 2019, 7, 985.
[45]
Frentzel-Beyme L.; Kloss M.; Kolodzeiski P.; Pallach R.; Henke S. J. Am. Chem. Soc. 2019, 141, 12362.
[46]
Wang Y.; Fin H.; Ma Q.; Mo K.; Mao H.; Feldhoff A.; Cao X.; Li Y.; Pan F.; Jiang Z. Angew. Chem. Int. Ed. 2020, 59, 4365.
[47]
Jiang G.; Qu C.; Xu F.; Zhang E.; Lu Q.; Cai X.; Hausdorf S.; Wang H.; Kaskel S. Adv. Funct. Mater. 2021, 31, 2104300.
[48]
Zeng M. H.; Feng X. L.; Chen X. M. Dalton Trans. 2004, 2217.
[49]
Zeng M. H.; Wang Q. X.; Tan Y. X.; Hu S.; Zhao H. X.; Long L. S.; Kurmoo M. J. Am. Chem. Soc. 2010, 132, 2561.
[50]
Yin Z.; Wang Q. X.; Zeng M. H. J. Am. Chem. Soc. 2012, 134, 4857.
[51]
Zeng M. H.; Yin Z.; Tan Y. X.; Zhang W. X.; He Y. P.; Kurmoo M. J. Am. Chem. Soc. 2014, 136, 4680.
[52]
Yin Z.; Wan S.; Yang J.; Kurmoo M.; Zeng M. H. Coord. Chem. Rev. 2019, 378, 500.
[53]
Zeng M.-H.; Tan Y.-X.; He Y.-P.; Yin Z.; Chen Q.; Kurmoo M. Inorg. Chem. 2013, 52, 2353.
[54]
Shekhah O.; Liu J.; Fischer R. A.; Woll C. Chem. Soc. Rev. 2011, 40, 1081.
[55]
Xu R. R.; Yu J. H.; Yan W. F. Prog. Chem. 2020, 32, 1017. (in Chinese)
[55]
(徐如人, 于吉红, 闫文付, 化学进展, 2020, 32, 1017.)
Outlines

/