Review

Research Progress in Controllable Preparation of Graphene Nanoribbons

  • Congcong Ning ,
  • Qian Yang ,
  • Amin Mao ,
  • Zijia Tang ,
  • Yan Jin ,
  • Baoshan Hu
Expand
  • a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331
    b School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331

Received date: 2022-12-28

  Online published: 2023-03-17

Supported by

Science and Technology Research Project of Chongqing Education Commission(KJZD-M202000102); National Natural Science Foundation of China(22005040); Fundamental Research Funds for the Central Universities(2021CDJQY-005)

Abstract

Graphene nanoribbons (GNRs) are the ribbons of graphene with a width of nanoscale. According to the different edge configurations, the GNRs can be classified into Zigzag-edge graphene nanoribbons (ZGNRs) and Armchair-edge graphene nanoribbons (AGNRs), strongly affecting electronic structure and properties of GNRs. The triggered quantum confinement and edge effects by rationalizing the structural design can open the bandgap of GNRs. Besides, GNRs have huge length-to-width ratio and proportion of edge atoms, which provide infinite possibilities for realizing functional customization through structure tailoring. These geometric and electronic structural properties make graphene nanoribbons have more application potential than graphene in many fields such as electronic devices. Therefore, the related research of graphene nanoribbons has been a hot spot in the field of nanomaterials. This review introduces the structures and properties of graphene nanoribbons firstly, and then provides a comprehensive picture of the preparation approaches of GNRs, and the corresponding preparation methods can be divided into two parts: (1) Top-down categories: The GNRs are obtained by the etching and cutting of graphene, as well as carbon nanotubes (CNTs), with utilizing the plasma, ion beam, scanning tunneling microscope and metal nanoparticles. However, these methods are still in the stage of laboratory research, and fabrication of high quality GNRs is difficult because of lacking the processing accuracy. (2) Bottom-up categories: The GNRs can be synthesized using carbon containing precursors, e.g. organic compounds, hydrocarbon gas and SiC. The bottom-up method facilitates to prepare several nanometers-width GNRs with a certain degree of controllability, among which ultra-narrow GNRs can be fabricated using organic synthesis, and the chemical vapor deposition (CVD) method is expected to achieve the industrial production of high-quality GNRs with low-cost preparation. Finally, we discuss the challenges and prospects of the research of GNRs. We believe that GNRs will become a new structural and functional material with great application potential in numerous fields, as is catalyzed by innovative development of materials and techniques.

Cite this article

Congcong Ning , Qian Yang , Amin Mao , Zijia Tang , Yan Jin , Baoshan Hu . Research Progress in Controllable Preparation of Graphene Nanoribbons[J]. Acta Chimica Sinica, 2023 , 81(4) : 406 -419 . DOI: 10.6023/A22120513

References

[1]
Balandin, A. A. Nat. Mater. 2011, 10, 569.
[2]
Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys.-Chim. Sin. 2016, 32, 14. (in Chinese)
[2]
(陈旭东, 陈召龙, 孙靖宇, 张艳锋, 刘忠范, 物理化学学报, 2016, 32, 14.)
[3]
Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
[4]
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
[5]
Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phys.-Chim. Sin. 2022, 38, 2006046. (in Chinese)
[5]
(程熠, 王坤, 亓月, 刘忠范, 物理化学学报, 2022, 38, 2006046.)
[6]
Jian, M. Q.; Zhang, Y. Y.; Liu, Z. F. Acta Phys.-Chim. Sin. 2022, 38, 2007093. (in Chinese)
[6]
(蹇木强, 张莹莹, 刘忠范, 物理化学学报, 2022, 38, 2007093.)
[7]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, L. V.; Firsov, A. A. Science 2004, 306, 666.
[8]
Ghaffarkhah, A.; Hosseini, E.; Kamkar, M.; Sehat, A. A.; Dordanihaghighi, S.; Allahbakhsh, A.; van der Kuur, C.; Arjmand, M. Small 2022, 18, 2102683.
[9]
Li, J. Z.; Chen, M. G.; Samad, A.; Dong, H. C.; Ray, A.; Zhang, J. W.; Jiang, X. C.; Schwingenschlogl, U.; Domke, J.; Chen, C. L.; Han, Y.; Fritz, T.; Ruoff, R. S.; Tian, B.; Zhang, X. X. Nat. Mater. 2022, 21, 740.
[10]
Wang, Z. Y.; Li, J. F.; Liu, S. Y.; Shao, G. F.; Zhao, X. J. Nanoscale 2022, 14, 16944.
[11]
Wang, F.; Wang, B. Y.; You, W.; Chen, G.; You, Y. Z. Nano Res. 2022, 15, 9223.
[12]
Lawrence, J.; Berdonces-Layunta, A.; Edalatmanesh, S.; Castro- Esteban, J.; Wang, T.; Jimenez-Martin, A.; de la Torre, B.; Castrillo- Bodero, R.; Angulo-Portugal, P.; Mohammed, M. S. G.; Matej, A.; Vilas-Varala, M.; Schiller, F.; Corso, M.; Jelinek, P.; Pena, D.; de Oteyza, D. G. Nat. Chem. 2022, 14, 1451.
[13]
Chen, W. Y.; Ge, C.; Li, J. T.; Beckham, J. L.; Yuan, Z.; Wyss, K. M.; Advincula, P. A.; Eddy, L.; Kittrell, C.; Chen, J. H.; Luong, D. X.; Carter, R. A.; Tour, J. M. ACS Nano 2022, 16, 6646.
[14]
Sahalianov, I. Y.; Radchenko, T. M.; Tatarenko, V. A.; Cuniberti, G.; Prylutskyy, Y. I. J. Appl. Phys. 2019, 126, 054302.
[15]
Torres-Rojas, R. M.; Contreras-Solorio, D. A.; Hernández, L.; Enciso, A. Solid State Commun. 2022, 341, 114553.
[16]
Liu, Y.; Coppens, M. O. Adv. Funct. Mater. 2022, 32, 2200199.
[17]
Nandee, R.; Chowdhury, M. A.; Shahid, A.; Hossain, N.; Rana, M. Results in Engineering 2022, 15, 100474.
[18]
Nakada, K.; Fujita, M. Phys. Rev. B 1996, 54, 17954.
[19]
Zheng, X. Q.; Feng, M.; Zhan, H. B. Prog. Chem. 2012, 24, 2320. (in Chinese)
[19]
(郑小青, 冯苗, 詹红兵, 化学进展, 2012, 24, 2320.)
[20]
Son, Y. W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803.
[21]
Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206805.
[22]
Dutta, S.; Pati, S. K. J. Mater. Chem. 2010, 20, 8207.
[23]
Sharma, R.; Nair, N.; Strano, M. S. J. Phys. Chem. C 2009, 113, 14771.
[24]
Sun, J.; Iwasaki, T.; Muruganathan, M.; Mizuta, H. Appl. Phys. Lett. 2015, 106, 033509.
[25]
Su, W. T.; Esfandiar, A.; Lancry, O.; Shao, J. Q.; Kumar, N.; Chaigneau, M. Chem. Commun. 2021, 57, 6895.
[26]
Wang, X.; Dai, H. Nat. Chem. 2010, 2, 661.
[27]
Bai, J.; Duan, X.; Huang, Y. Nano Lett. 2009, 9, 2083.
[28]
Xu, W. T.; Seo, H. K.; Min, S. Y.; Cho, H.; Lim, T. S.; Oh, C. Y.; Lee, Y.; Lee, T. W. Adv. Mater. 2014, 26, 3459.
[29]
Jeon, S.; Han, P.; Jeong, J.; Hwang, W. S.; Hong, S. W. Nanomaterials 2020, 11, 33.
[30]
Pan, Z.; Liu, N.; Fu, L.; Liu, Z. J. Am. Chem. Soc. 2011, 133, 17578.
[31]
Zhang, X. W.; Yazyev, O. V.; Feng, J. J.; Xie, L. M.; Tao, C. G.; Chen, Y. C.; Jiao, L. Y.; Pedramrazi, Z.; Zettl, A.; Louie, S. G.; Dai, H. J.; Crommie, M. F. ACS Nano 2013, 7, 198.
[32]
Wu, S.; Liu, B.; Shen, C.; Li, S.; Huang, X. C.; Lu, X. B.; Chen, P.; Wang, G. L.; Wang, D. M.; Liao, M. Z.; Zhang, J.; Zhang, T. T.; Wang, S. P.; Yang, W.; Yang, R.; Shi, D. X.; Watanabe, K. J.; Taniguchi, T.; Yao, Y. G.; Wang, W. H.; Zhang, G. Y. Phys. Rev. Lett. 2018, 120, 216601.
[33]
Iberi, V.; Ievlev, A. V.; Vlassiouk, I.; Jesse, S.; Kalinin, S. V.; Joy, D. C.; Rondinone, A. J.; Belianinov, A.; Ovchinnikova, O. S. Nanotechnology 2016, 27, 125302.
[34]
Lemme, M. C.; Bell, D. C.; Williams, J. R.; Stern, L. A.; Baugher, B. W. H.; Jarillo Herrero, P.; Marcus, C. M. ACS Nano 2009, 3, 2674.
[35]
Abbas, A. N.; Liu, G.; Liu, B. L.; Zhang, L. Y.; Liu, H.; Ohlberg, D.; Wu, W.; Zhou, C. W. ACS Nano 2014, 8, 1538.
[36]
Levente, T.; Gergely, D.; Philippe, L.; Laszlo, P. B. Nat. Nanotechnol. 2008, 3, 397.
[37]
Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Nano Res. 2008, 1, 116.
[38]
Campos, L. C.; Manfrinato, V. R.; Sanchez Yamagishi, J. D.; Kong, J; Jarillo Herrero, P. Nano Lett. 2009, 9, 2600.
[39]
Freitag, M. Nat. Nanotechnol. 2008, 3, 455.
[40]
Qiu, Z. Y.; Song, L.; Zhao, J.; Li, Z. Y.; Yang, J. L. Angew. Chem. Int. Ed. 2016, 55, 9918.
[41]
Sch?ffel, F.; Warner, J. H.; Bachmatiuk, A.; Rellinghaus, B.; Büchner, B.; Schultz, L.; Rümmeli, M. H. Phys. Status Solidi B 2009, 246, 2540.
[42]
Jin, J. E.; Lee, J. H.; Choi, J. H.; Jang, H. K.; Na, J.; Whang, D.; Kim, D. H.; Kim, G. T. Phys. Chem. Chem. Phys. 2016, 18, 101.
[43]
Ta, H. Q.; Bachmatiuk, A.; Warner, J. H.; Zhao, L.; Sun, Y.; Zhao, J.; Gemming, T.; Trzebicka, B.; Liu, Z.; Pribat, D.; Rümmeli, M. H. ACS Nano 2016, 10, 6323.
[44]
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
[45]
Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. ACS Nano 2010, 4, 2059.
[46]
Elias, A. L.; Botello-Mendez, A. R.; Meneses-Rodriguez, D.; Jehova Gonzalez, V.; Ramirez-Gonzalez, D.; Ci, L.; Munoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M. Nano Lett. 2010, 10, 366.
[47]
Jiao, L.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Nature 2009, 458, 877.
[48]
Morelos-Gomez, A.; Vega-Diaz, S. M.; Gonzalez, V. J.; Tristan- Lopez, F.; Cruz-Silva, R.; Fujisawa, K.; Muramatsu, H.; Hayashi, T.; Mi, X.; Shi, Y. F. ACS Nano 2012, 6, 2261.
[49]
Fan, Y. C.; Li, J. L.; Liu, X.; Wang, L. J.; Chen, X. H.; Sun, S. K.; Kawasaki, A.; Jiang, W. Carbon 2011, 49, 1439.
[50]
Kim, K.; Sussman, A.; Zettl, A. ACS Nano 2010, 4, 1362.
[51]
Hu, X. L.; Hu, Y. Z.; Huang, J. D.; Zhou, N.; Liu, Y. H.; Wei, L.; Chen, X.; Zhuang, N. F. Nanotechnology 2018, 29, 145705.
[52]
Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Mu?oz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C. Nano Today 2010, 5, 351.
[53]
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Müllen, K.; Fasel, R. Nature 2010, 466, 470.
[54]
Blankenburg, S.; Cai, J. M.; Ruffieux, P.; Jaafer, R.; Passerone, D.; Feng, X. L.; Mullen, K.; Fasel, R.; Pignedoli, C. A. J. Am. Chem. Soc. 2012, 6, 2020.
[55]
Nguyen, G. D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y.-C.; Favaro, M. J. Phys. Chem. C 2016, 120, 2684.
[56]
Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. J. Am. Chem. Soc. 2016, 138, 9137.
[57]
Nguyen, T. C.; Aluru, N. R. Comput. Mater. Sci. 2023, 216, 111814.
[58]
Kolmer, M.; Zuzak, R.; Steiner, A. K.; Zajac, L.; Engelund, M.; Godlewski, S.; Szymonski, M.; Amsharov, K. Science 2019, 363, 57.
[59]
Sakaguchi, H.; Kawagoe, Y.; Hirano, Y.; Iruka, T.; Yano, M.; Nakae, T. Adv. Mater. 2014, 26, 4134.
[60]
Chen, Z. P.; Zhang, W.; Palma, C. A.; Lodi Rizzini, A.; Liu, B. L.; Abbas, A.; Richter, N.; Martini, L.; Wang, X. Y.; Cavani, N. J. Am. Chem. Soc. 2016, 138, 15488.
[61]
Fu, Y. B.; Yang, H.; Gao, Y. X.; Huang, L.; Berger, R.; Liu, J. Z.; Lu, H. L.; Cheng, Z. H.; Du, S. X.; Gao, H. J.; Feng, X. L. Angew. Chem. Int. Ed. 2020, 59, 8873.
[62]
Timothy, H. V.; Mikhail, S.; Donna, A. K.; Martha, D. M.; Eric, B.; Lingmei, K.; Peter, M. W.; Peter, A. D.; Axel, E.; Alexander, S. Nat. Commun. 2014, 5, 3189.
[63]
Huang, Y. J.; Mai, Y. Y.; Beser, U.; Teyssandier, J.; Velpula, G.; van Gorp, H.; Straaso, L. A.; Hansen, M. R.; Rizzo, D.; Casiraghi, C. J. Am. Chem. Soc. 2016, 138, 10136.
[64]
Yang, L.; Zheng, W. H.; Osella, S.; Droste, J.; Komber, H.; Liu, K.; Bockmann, S.; Beljonne, D.; Hansen, M. R.; Bonn, M.; Wang, H. I.; Liu, J. Z.; Feng, X. L. Adv. Sci. 2022, 9, 2200708.
[65]
Liu, Z. Y.; Hu, Y. B.; Zheng, W. H.; Wang, C.; Baaziz, W.; Richard, F.; Ersen, O.; Bonn, M.; Wang, H. I.; Narita, A.; Ciesielski, A.; Mullen, K.; Samori, P. Adv. Funct. Mater. 2022, 32, 2109543.
[66]
Karakachian, H.; Nguyen, T. T. N.; Aprojanz, J.; Zakharov, A. A.; Yakimova, R.; Rosenzweig, P.; Polley, C. M.; Balasubramanian, T.; Tegenkamp, C.; Power, S. R. Nat. Commun. 2020, 11, 6380.
[67]
Aprojanz, J.; Power, S. R.; Bampoulis, P.; Roche, S.; Jauho, A. P.; Zandvliet, H. J. W.; Zakharov, A. A.; Tegenkamp, C. Nat. Commun. 2018, 9, 4426.
[68]
Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; de Heer, W. A. Nat. Nanotechnol. 2010, 5, 727.
[69]
Galves, L. A.; Wofford, J. M.; Soares, G. V.; Jahn, U.; Pfüller, C.; Riechert, H.; Lopes, J. M. J. Carbon 2017, 115, 162.
[70]
Copetti, G.; Nunes, E. H.; Feijo, T. O.; Galves, L. A.; Heilmann, M.; Soares, G. V.; Lopes, J. M. J.; Radtke, C. Nanotechnology 2021, 32, 145707.
[71]
Dedkov, Y. S.; Fonin, M.; Laubschat, C. Appl. Phys. Lett. 2008, 92, 052506.
[72]
Chen, Q.; Song, Q.; Yi, X.; Chen, Q.; Wu, W.; Huang, M.; Zhao, C.; Wang, S.; Zhu, H. Sci. China Mater. 2020, 63, 1973.
[73]
Kastorp, C. F. P.; Duncan, D. A.; Scheffler, M.; Thrower, J. D.; Jorgensen, A. L.; Hussain, H.; Lee, T. L.; Hornekaer, L.; Balog, R. Nanoscale 2020, 12, 19776.
[74]
Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80, 245411.
[75]
Sicot, M.; Bouvron, S.; Zander, O.; Rüdiger, U.; Dedkov, Y. S.; Fonin, M. Appl. Phys. Lett. 2010, 96, 093115.
[76]
Kazi, H.; Cao, Y.; Tanabe, I.; Driver, M. S.; Dowben, P. A.; Kelber, J. A. Mater. Res. Express 2014, 1, 035601.
[77]
Mohamad Yunus, R.; Miyashita, M.; Tsuji, M.; Hibino, H.; Ago, H. Chem. Mater. 2014, 26, 5215.
[78]
Jacobberger, R. M.; Kiraly, B.; Fortin-Deschenes, M.; Levesque, P. L.; McElhinny, K. M.; Brady, G. J.; Rojas Delgado, R.; Singha Roy, S.; Mannix, A.; Lagally, M. G. Nat. Commun. 2015, 6, 8006.
[79]
Sun, H. B.; Liu, F. N.; Zhang, L. N.; McLean, B.; An, H.; Kim, S.; Suh, J.; Wang, Z. J.; Ding, F. Adv. Funct. Mater. 2022, 32, 2206961.
[80]
Jacobberger, R. M.; Arnold, M. S. ACS Nano 2017, 11, 8924.
[81]
Way, A. J.; Murray, E. A.; Goltl, F.; Saraswat, V.; Jacobberger, R. M.; Mavrikakis, M.; Arnold, M. S. J. Phys. Chem. Lett. 2019, 10, 4266.
[82]
Way, A. J.; Jacobberger, R. M.; Arnold, M. S. Nano Lett. 2018, 18, 898.
[83]
Way, A. J.; Jacobberger, R. M.; Guisinger, N. P.; Saraswat, V.; Zheng, X.; Suresh, A.; Dwyer, J. H.; Gopalan, P.; Arnold, M. S. Nat. Commun. 2022, 13, 2992.
[84]
Kim, H. W.; Joo, W.-J.; Jang, W.-J.; Kim, S. H. Physica E Low Dimens. Syst. 2023, 146, 115531.
[85]
Cai, L.; He, W.; Xue, X.; Huang, J.; Zhou, K.; Zhou, X.; Xu, Z.; Yu, G. Natl. Sci. Rev. 2021, 12, 37.
[86]
Wei, D. C.; Liu, Y. Q.; Zhang, H. L.; Huang, L. P.; Wu, B.; Chen, J. Y.; Yu, G. J. Am. Chem. Soc. 2009, 131, 11147.
[87]
Kato, T.; Hatakeyama, R. Nat. Nanotechnol. 2012, 7, 651.
[88]
Martin-Fernandez, I.; Wang, D. B.; Zhang, Y. G. Nano Lett. 2012, 12, 6175.
[89]
Chen, L. X.; He, L.; Wang, H. S.; Wang, H. M.; Tang, S. J.; Cong, C. X.; Xie, H.; Li, L.; Xia, H.; Li, T. X.; Wu, T. R.; Zhang, D. L.; Deng, L. W.; Yu, T.; Xie, X. M.; Jiang, M. H. Nat. Commun. 2017, 8, 14703.
[90]
Xiong, X. Y.; Ning, C. C.; Jin, Y.; Li, D. L.; Yang, Q.; Gong, X. N.; Cheng, C.; Pan, Q. J.; Xu, Y.; Hu, B. S. Carbon 2022, 191, 571.
[91]
Liang, X. G.; Wi, S. ACS Nano 2012, 6, 9700.
[92]
Jeong, S. J.; Jo, S.; Lee, J.; Yang, K.; Lee, H.; Lee, C. S.; Park, H.; Park, S. Nano Lett. 2016, 16, 5378.
[93]
Hwang, W. S.; Tahy, K.; Nyakiti, L. O.; Wheeler, V. D.; Myers- Ward, R. L.; Eddy, C. R.; Gaskill, D. K.; Xing, H. L.; Seabaugh, A.; Jena, D. J. Vac. Sci. Technol. B 2012, 30, 03D104.
[94]
Hwang, W. S.; Zhao, P.; Tahy, K.; Nyakiti, L. O.; Wheeler, V. D.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K.; Robinson, J. A.; Haensch, W.; Xing, H. L.; Seabaugh, A.; Jena, D. APL Mater. 2015, 3, 011101.
[95]
Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; de Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Appl. Phys. Lett. 2013, 103, 254114.
[96]
Linas, J. P.; Fairbrother, A.; Brain, G. B.; Shi, W.; Lee, K.; Wu, S.; Choi, B. Y.; Braganza, R.; Lear, J.; Kau, N.; Choi, W.; Chen, C.; Pedramrazi, Z.; Dumslaff, T.; Narita, A.; Feng, X. L.; Mullen, K.; Fischer, F.; Zettl, A.; Ruffieux, P.; Yablonovitch, E.; Crommie, M.; Fasel, R.; Bokor, J. Nat. Commun. 2017, 8, 633.
[97]
Brain, G. B.; Sun, Q.; Giovannantonio, M. D.; Du, C. Z.; Wang, X. Y.; Linas, J. P.; Mutlu, Z.; Lin, Y. X.; Wihelm, J.; Overbeck, J.; Daniels, C.; Lamparski, M.; Sahabudeen, H.; Perrin, M. L.; Urgel, J. I.; Mishra, S.; Kinikar, A.; Widmer, R.; Stolz, S.; Bommert, M.; Pignedoli, C.; Feng, X. L.; Calame, M.; Mullen, K.; Narita, A.; Meunier, V.; Bokor, J.; Fasel, R.; Ruffieux, P. Small 2022, 18, 2202301.
[98]
Ye, Y.; Gan, L.; Dai, L.; Meng, H.; Wei, F.; Dai, Y.; Shi, Z. J.; Yu, B.; Guo, X. F.; Qin, G. G. J. Mater. Chem. 2011, 21, 11760.
[99]
Moradian, R.; Mohammadi, Y.; Ghobadi, N. J. Phys. Condens. Mat. 2008, 20, 425211.
[100]
Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E.; Zhang, G. Y. ACS Nano 2011, 5, 3645.
[101]
Martín, A.; Hernández-Ferrer, J.; Martínez, M. T.; Escarpa, A. Electrochim. Acta 2015, 172, 2.
[102]
Wu, S.; Lan, X. Q.; Huang, F. F.; Luo, Z. Z.; Ju, H. X.; Meng, C. G.; Duan, C. Y. Biosens. Bioelectron. 2012, 32, 293.
[103]
Asadian, E.; Shahrokhian, S.; Zad, A. I.; Jokar, E. Sensor. Actuat. B: Chem. 2014, 196, 582.
[104]
Martin, A.; Batalla, P.; Hernandez-Ferrer, J.; Martinez, M. T.; Escarpa, A. Biosens. Bioelectron. 2015, 68, 163.
[105]
Ismail, N. S.; Le, Q. H.; Yoshikawa, H.; Saito, M.; Tamiya, E. Electrochim. Acta 2014, 146, 98.
[106]
Huang, B.; Li, Z. Y.; Liu, Z. R.; Zhou, G.; Hao, S. G.; Wu, J.; Gu, B. L.; Duan, W. H. J. Phys. Chem. C 2008, 112, 13442.
[107]
Shekhirev, M.; Lipatov, A.; Torres, A.; Vorobeva, N. S.; Harkleroad, A.; Lashkov, A.; Sysoev, V.; Sinitskii, A. ACS Appl. Mater. Interfaces 2020, 12, 7392.
[108]
Salih, E.; Ayesh, A. I. Sensors 2020, 20, 3932.
[109]
Ali, M.; Khan, S.; Awwad, F.; Tit, N. Appl. Surf. Sci. 2020, 514, 145866.
[110]
Jiang, J. W.; Wang, J. S.; Li, B. W. Nanoscale 2010, 2, 2864.
[111]
Nelson, T.; Zhang, B.; Prezhdo, O. V. Nano Lett. 2010, 10, 3237.
Outlines

/