Article

Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate

  • Jie Yang ,
  • Lin Ling ,
  • Yuxue Li ,
  • Long Lu
Expand
  • a School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
    b CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2023-02-28

  Online published: 2023-03-24

Supported by

National Natural Science Foundation of China(22175197)

Abstract

The thermal decomposition characteristics of ammonium perchlorate (AP) have a great influence on the performance of solid propellant. Although a large number of mechanistic studies have been published over the past few decades, there is no unified understanding of the decomposition yet, and the overall mechanism pathway is still unclear. In the present work, the thermal decomposition pathways of AP were studied systematically using broken-symmetry density functional theory method (BS-UB3LYP/6-311+G(d,p). This method can describe the homo-cleavage process of covalent bond well, and locate the transition state with singlet-diradical characteristics. Compared with typical multireference method, broken- symmetry density functional theory (BS-UDFT) can give good results and is much faster, and therefore is highly convenient for practical application. The results show that, the overall thermal decomposition pathway under the experimental conditions is initiated by the proton transfer between NH4+ cation and ClO4 anion, leading to neutral NH3 and HClO4 molecules, which are absorbed on the AP surface and then escape to the gas phase. The second important step is the homolytic cleavage of the Cl—OH bond in HClO4. The energy barrier is 67.5 kJ/mol under 620 K. Then, •OH radical and •ClO3 radical react with NH3 molecule, yielding •NH2 radical. Then the •NH2 radical react with HClO4, leading to •ClO4 radical, which reacts with NH3, leading to the oxidized species H2NO. The radical species, such as •OH, •NH2, •ClO and so on, abstract the H atom of H2NO, yielding NO. NO reacts with •OH radical, leading to NO2; NO reacts with •NH2 radical and •OH radical, leading to N2O. These products are consistent well with the experimental observations. Due to the complexity of the mechanisms, some strategies are used in this study: firstly, we concentrate on the reaction pathways of active species and the NH3 and HClO4 molecules, which exist in large amount; secondly, more reaction pathways involving the newly formed active species are considered.

Cite this article

Jie Yang , Lin Ling , Yuxue Li , Long Lu . Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate[J]. Acta Chimica Sinica, 2023 , 81(4) : 328 -337 . DOI: 10.6023/A23020056

References

[1]
Thakre, P.; Yang, V. Solid Propellants, Encyclopedia of Aerospace Engineering, Eds.: Blockley, R.; Shyy, W., John Wiley & Sons, Ltd, London, 2010, pp. 1-10.
[2]
Mason, B. P.; Roland, C. M. Rubber Chem. Technol. 2019, 92, 1.
[3]
Chaturvedi, S.; Dave, P. N. Arabian. J. Chem. 2019, 12, 2061.
[4]
Usman, M.; Wang, L.; Yu, H.; Haq, F.; Haroon, M.; R. Summe, Ullah; Khan, A.; Fahad, S.; Nazir, A.; Elshaarani, T. J. Organomet. Chem. 2018, 872, 40.
[5]
Chen, T.; Hu, Y.; Zhang, C.; Gao, Z. Def. Technol. 2021, 17, 1471.
[6]
Miyata, K; Kubota, N. Propellants Explos. Pyrotech. 1990, 15, 127.
[7]
Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L. T.; Khimeche, K.; Fassina, M.; Dossi, S.; Colombo, G. Arabian. J. Chem. 2019, 12, 3639.
[8]
Boldyrev, V. V. Thermochim. Acta 2006, 443, 1.
[9]
Jacobs, P. W. M.; Whitehead, H. M. Chem. Rev. 1969, 69, 551.
[10]
Zhang, H.; Nie, J.; Jiao, G.; Xu, X.; Yan, S.; Guo, X.; Zhang, T. Appl. Sci. 2021, 11, 9392.
[11]
Heath, G. A.; Majer, J. R. Trans. Faraday Soc. 1964, 60, 1783.
[12]
Góbi, S.; Bergantini, A.; Turner, A. M.; Kaiser, R. I. J. Phys. Chem. A 2017, 121, 3879.
[13]
Mallick, L.; Kumar, S.; Chowdhury, A. Thermochim. Acta 2015, 610, 57.
[14]
Mallick, L.; Kumar, S.; Chowdhury, A. Thermochim. Acta 2017, 653, 83.
[15]
Zhu, Y.-L.; Huang, H.; Ren, H.; Jiao, Q.-J. J. Energ. Mater. 2014, 32, 16.
[16]
Khairetdinov, E. F.; Boldyrev, V. V. Thermochim. Acta 1980, 41, 63.
[17]
Bircumshaw, L. L.; Newman, B. H. Proc. R. Soc. London, Ser. A 1955, 254, 228.
[18]
Galwey, A. K.; Jacobs, P. W. M. Proc. R. Soc. London, Ser. A 1960, 254, 455.
[19]
Jacobs, P. W. M.; Russell-Jones, A. J. Phys. Chem. 1968, 72, 202.
[20]
Jacobs, P. W. M.; Pearson, G. S. Combust. Flame. 1969, 13, 419.
[21]
Liu, Z.; Yin, C.; Kong, Y.; Zhao, F.; Luo, Y.; Xiang, H. Energetic Materlals 2000, 2, 75. (in Chinese)
[21]
(刘子如, 阴翠梅, 孔扬辉, 赵凤起, 罗阳, 向海, 含能材料, 2000, 2, 75.)
[22]
Politzer, P.; Lane, P. J. Mol. Struct. THEOCHEM 1998, 454, 229.
[23]
Zhu, R. S.; Lin, M. C. Chem. Phys. Lett. 2006, 431, 272.
[24]
Zhu, R. S.; Lin, M. C. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 10, 77.
[25]
Chatterjee, T.; Thynell, S. T. J. Phys. Chem. A 2021, 125, 7520.
[26]
Liu, M.; Liu, C.; Tsai, H. J. Chin. Chem. Soc. 2018, 65, 1437.
[27]
Jacobs, P. W. M.; Russell-Jones, A. AIAA J. 1967, 5, 829.
[28]
Levy, J. B. J. Phys. Chem. 1962, 66, 1092.
[29]
Fisher, I. P. Trans. Faraday Soc. 1967, 63, 684.
[30]
Zhou, L.; Cao, S.; Zhang, L.; Xiang, G.; Wang, J.; Zeng, X.; Chen, J. J. Hazard. Mater. 2020, 392, 122358.
[31]
Pearson, G. S.; Sutton, D. AIAA J. 1967, 5, 2101.
[32]
Zhu, R. S.; Lin, M. C. PhysChemComm 2001, 4, 127.
[33]
Xu, S.; Lin, M. C. Int. J. Chem. Kinet. 2009, 41, 678.
[34]
Lüttke, W.; Skancke, P. N.; Traetteberg, M. Theor. Chim. Acta 1994, 87, 321.
[35]
Ruud, K.; Helgaker, T.; Uggerud, E. J. Mol. Struct. THEOCHEM 1997, 393, 59.
[36]
Zhu, W.; Wei, T.; Zhu, W.; Xiao, H. J. Phys. Chem. A 2008, 112, 4688.
[37]
Zhu, R. S.; Lin, M. C. J. Phys. Chem. C 2008, 112, 14481.
[38]
For details, see supporting information SI.
[39]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J., A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
[40]
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[41]
Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, New York, 1996, pp. 221-229.
[42]
Grafenstein, J.; Hjerpe, A. M.; Kraka, E. J. Phys. Chem. A 2000, 104, 1748.
[43]
Yao, Z.; Yu, Z. J. Am. Chem. Soc. 2011, 133, 10864.
[44]
Ling, L.; Liu, K.; Li, X.; Li, Y. ACS Catal. 2015, 5, 2458.
[45]
Ling, L.; Wang, J.; Li, J.; Li, Y.; Lu, L. Chin. J. Org. Chem. 2023, 43, 285. (in Chinese)
[45]
(凌琳, 王健, 李婧, 李玉学, 吕龙, 有机化学, 2023, 43, 285.)
Outlines

/