A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications
Received date: 2023-02-20
Online published: 2023-03-28
Supported by
National Natural Science Foundation of China(21971241)
Titanium-based metal organic frameworks (Ti-MOFs) have become a hot topic in current materials research due to their excellent photocatalytic activity. However, due to the extremely high reactivity and oxygenophilic properties of Ti ions, oxides and other competing by-products are easily formed during the reaction process, making the synthesis of Ti-MOFs extremely challenging. The research on Ti-MOFs was carried out simultaneously at the early stage of MOFs development, however, after more than two decades of development, only tens of Ti-MOFs have been reported, accounting for an extremely limited proportion of the tens of thousands of MOFs. In order to avoid or reduce the occurrence of titanium ion side reactions, Ti-MOFs are usually synthesized by introducing metal Ti ions into the framework of known MOFs to orientate the synthesis of Ti-MOFs, which is called post-synthetic method (PSM) and is also an effective method to construct Ti-MOF framework. The examples of PSM for constructing Ti-MOFs are systematically investigated and summarized in a timely manner. Firstly, based on the different ways and positions of titanium ion introduction, three routes are classified as ion exchange, ion insertion (introduction of titanium ion at the position of metal nodes or cluster units) and ligand modification (introduction of titanium ion at the position of organic ligands), and the Ti-MOFs constructed by each route are introduced by examples. Subsequently, the design and application of Ti-MOFs constructed by PSM and their composites are discussed. Finally, the current status of PSM-constructed Ti-MOFs is summarized and the future development direction is foreseen.
Xueping Qi , Fei Wang , Jian Zhang . A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications[J]. Acta Chimica Sinica, 2023 , 81(5) : 548 -558 . DOI: 10.6023/A23020041
[1] | Li, X. F.; Yan, B. Y.; Huang, W. Q.; Fu, L. P.; Sun, X. H.; Lǚ, A. H. Acta Chim. Sinica 2021, 79, 459. (in Chinese) |
[1] | (李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.) |
[2] | Liu, X. L.; Xiao, Y.; Zhang, Z. Y.; You, Z. F.; Li, J. L.; Ma, D. X.; Li, B. Y. Chin. J. Chem. 2021, 39, 3462. |
[3] | Yan, X.; Qu, H. M.; Chang, Y.; Duan, X. X. Acta Chim. Sinica 2022, 80, 1183. (in Chinese) |
[3] | (闫续, 屈贺幂, 常烨, 段学欣, 化学学报, 2022, 80, 1183.) |
[4] | Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese) |
[4] | (邓汉林, 罗贤生, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.) |
[5] | Mo, G. L.; Wang, Q.; Lu, W. Y.; Wang, C.; Li, P. Chin. J. Chem. 2022, 41, 335. |
[6] | Huang, H. L.; Sun, Y. X.; Jia, X. M.; Xue, W. J.; Geng, C. X.; Zhao, X.; Mei, D. H.; Zhong, C. L. Chin. J. Chem. 2022, 39, 1538. |
[7] | Dou, J.; Chen, Q. Chin. J. Chem. 2023, 41, 695. |
[8] | Qi, Y.; Ren, S. S.; Che, Y.; Yen, J. W.; Ning, G. L. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
[8] | (齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
[9] | Assi, H.; Mouchaham, G.; Steunou, N.; Devic, T.; Serre, C. Chem. Soc. Rev. 2017, 46, 3431. |
[10] | Li, L.; Wang, X. S.; Liu, T. F.; Ye, J. H. Small Methods 2020, 4, 2000486. |
[11] | Yan, Y.; Li, C. Q.; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245. |
[12] | Zhu, J. J.; Li, P. Z.; Guo, W. H.; Zhao, Y. L.; Zou, R. Q. Coordin. Chem. Rev. 2018, 359, 80. |
[13] | Serre, C.; Ferey, G. Inorg. Chem. 1999, 38, 5370. |
[14] | Serre, C.; Groves, J. A.; Lightfoot, P.; Slawin, A. M. Z.; Wright, P. A.; Stock, N.; Bein, T.; Haouas, M.; Taulelle, F.; Ferry, G. Chem. Mater. 2006, 18, 1451. |
[15] | Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Ferey, G. J. Am. Chem. Soc. 2009, 131, 10857. |
[16] | Gao, J. K.; Miao, J. W.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y. L.; Liu, B.; Zhang, Q. C. Chem. Commun. 2014, 50, 3786. |
[17] | Yuan, S.; Liu, T. F.; Feng, D. W.; Tian, J.; Wang, K. C.; Qin, J. S.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L. F; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926. |
[18] | Wang, S. J; Kitao, T.; Guillou, N.; Wahiduzzaman, M.; Martineau Corcos, C.; Nouar, F.; Tissot, A.; Binet, L.; Ramsahye, N.; Devautour-Vinot, S.; Kitagawa, S.; Seki, S.; Tsutsui, Y.; Briois, V.; Steunou, N.; Maurin, G.; Uemura, T.; Serre, C. Nat. Commun. 2018, 9, 1660. |
[19] | Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., nt. Ed. 2018, 57, 14852. |
[20] | Castells-Gil, J.; |
[21] | Li, C. Q.; Xu, H.; Gao, J. K; Du, W. N.; Shangguan, L. Q.; Zhang, X.; Lin, R. B.; Wu, H.; Zhou, W.; Liu, X. F.; Yao, J. M.; Chen, B. L. J. Mater. Chem. A 2019, 7, 11928. |
[22] | Wang, S. J.; Reinsch, H.; Heymans, N.; Wahiduzzaman, M.; Martineau-Corcos, C.; De Weireld, G.; Maurin, G.; Serre, C. Matter 2020, 2, 440. |
[23] | Li, H. Z.; Pan, Y.; Li, Q. H.; Lin, Q. P.; Lin, D. Y.; Wang, F.; Xu, G.; Zhang, J. J. Mater. Chem. A 2023, 11, 965. |
[24] | Sun, Y. Y.; Gao, M. Y.; Sun, Y. X.; Lu, D. F.; Wang, F.; Zhang, J. Inorg. Chem. 2021, 60, 13955. |
[25] | Sun, Y. Y.; Lu, D. F.; Sun, Y. X.; Gao, M. Y.; Zheng, N.; Gu, C.; Wang, F.; Zhang, J. ACS Mater. Lett. 2020, 3, 64. |
[26] | Salcedo-Abraira, P.; Babaryk, A. A.; Montero-Lanzuela, E.; Contreras-Almengor, O. R.; Cabrero-Antonino, M.; Grape, E. S.; Willhammar, T.; Navalon, S.; Elkaim, E.; Garcia, H.; Horcajada, P. Adv. Mater. 2021, 33, 2106627. |
[27] | Yan, Y.; Li, C. Q; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245. |
[28] | Zhang, L.; Fan, X.; Yi, X.; Lin, X.; Zhang, J. Acc. Chem. Res. 2022, 55, 3150. |
[29] | Mason, J. A.; Darago, L. E.; Lukens, W. W. Jr.; Long, J. R. Inorg. Chem. 2015, 54, 10096. |
[30] | Nguyen, N. T.; Furukawa, H.; Gandara, F.; Trickett, C. A.; Jeong, H. M.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 15394. |
[31] | Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem.-Eur. J. 2011, 17, 6643. |
[32] | Lan, G. X.; Ni, K. Y.; Veroneau, S. S.; Feng, X. Y.; Nash, G. T.; Luo, T. K.; Xu, Z. W.; Lin, W. B. J. Am. Chem. Soc. 2019, 141, 4204. |
[33] | Bueken, B.; Vermoortele, F.; Vanpoucke, D. E.; Reinsch, H.; Tsou, C. C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., nt. Ed. 2015, 54, 13912. |
[34] | Smolders, S.; Willhammar, T.; Krajnc, A.; Sentosun, K.; Wharmby, M. T.; Lomachenko, K. A.; Bals, S.; Mali, G.; Roeffaers, M. B. J.; De Vos, D. E.; Bueken, B. Angew. Chem., nt. Ed. 2019, 58, 9160. |
[35] | Padial, N. M.; Castells-Gil, J.; Almora-Barrios, N.; Romero-Angel, M.; da Silva, I.; Barawi, M.; Garcia-Sanchez, A.; de la Pena O'Shea, V. A.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2019, 141, 13124. |
[36] | Nguyen, H. L.; Gándara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330. |
[37] | Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2016, 7, 338. |
[38] | Chang, J. N.; Li, Q.; Yan, Y.; Shi, J. W.; Zhou, J.; Lu, M.; Zhang, M.; Ding, H. M.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Angew. Chem., nt. Ed. 2022, 61, e202209289. |
[39] | Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2022, 13, 4681. |
[40] | Cohen, S. M. Chem. Rev. 2012, 112, 970. |
[41] | Mi, L. W.; Hou, H. W.; Song, Z. Y.; Han, H. Y.; Xu, H.; Fan, Y. T.; Ng, S. W. Cryst. Growth Des. 2007, 7, 2553. |
[42] | Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coordin. Chem. Rev. 2020, 421, 213421. |
[43] | Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082. |
[44] | Lau, C. H.; Babarao, R.; Hill, M. R. Chem. Commun. 2013, 49, 3634. |
[45] | Yasin, A. S.; Li, J. T.; Wu, N. Q.; Musho, T. Phys. Chem. Chem. Phys. 2016, 18, 12748. |
[46] | Pratik, S. M.; Cramer, C. J. J. Phys. Chem. C 2019, 123, 19778. |
[47] | Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; álvaro, M.; Ferrer, B.; García, H. Appl. Catal. B: Environ. 2020, 278, 119345. |
[48] | Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. Chem. Commun. 2015, 51, 5735. |
[49] | Rasero-Almansa, A. M.; Iglesias, M.; Sánchez, F. RSC Adv. 2016, 6, 106790. |
[50] | Wu, X. P.; Gagliardi, L.; Truhlar, D. G. J. Am. Chem. Soc. 2018, 140, 7904. |
[51] | Zhang, Y. J.; Chen, H. J.; Pan, Y.; Zeng, X. L.; Jiang, X. F.; Long, Z.; Hou, X. D. Chem. Commun. 2019, 55, 13959. |
[52] | Parnicka, P.; Lisowski, W.; Klimczuk, T.; Mikolajczyk, A.; Zaleska-Medynska, A. Appl. Catal. B: Environ. 2022, 310, 121349. |
[53] | He, J. H.; Zhang, Y. J.; He, J.; Zeng, X. L.; Hou, X. D.; Long, Z. Chem. Commun. 2018, 54, 8610. |
[54] | Chen, M.; Long, Z.; Dong, R. H.; Wang, L.; Zhang, J. J.; Li, S. X.; Zhao, X. H.; Hou, X. D.; Shao, H. W.; Jiang, X. Y. Small 2020, 16, 1906240. |
[55] | Tu, J. P.; Zeng, X. L.; Xu, F. J.; Wu, X.; Tian, Y. F.; Hou, X. D.; Long, Z. Chem. Commun. 2017, 53, 3361. |
[56] | Zhou, Y.; Liu, J. J.; Long, J. L. J. Solid State Chem. 2021, 303, 122510. |
[57] | Brozek, C. K.; Dinca, M. J. Am. Chem. Soc. 2013, 135, 12886. |
[58] | Zou, L. F.; Feng, D. W.; Liu, T. F.; Chen, Y. P.; Yuan, S.; Wang, K. C.; Wang, X.; Fordham, S.; Zhou, H. C. Chem. Sci. 2016, 7, 1063. |
[59] | Liu, T. F.; Vermeulen, N. A.; Howarth, A. J.; Li, P.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Eur. J. Inorg. Chem. 2016, 2016, 4349. |
[60] | Li, Z. Y.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C. W.; Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2017, 139, 15251. |
[61] | Wang, X. J.; Ma, K. K.; Goh, T.; Mian, M. R.; Xie, H. M.; Mao, H.; Duan, J.; Kirlikovali, K. O.; Stone, A.; Ray, D.; Wasielewski, M. R.; Gagliardi, L.; Farha, O. K. J. Am. Chem. Soc. 2022, 144, 12192. |
[62] | Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449. |
[63] | Nguyen, H. G. T.; Mao, L.; Peters, A. W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catal. Sci. Technol. 2015, 5, 4444. |
[64] | Wang, J.; Zhang, J.; Peh, S. B.; Zhai, L. Z.; Ying, Y. P.; Liu, G. L.; Cheng, Y. D.; Zhao, D. ACS Appl. Energy Mater. 2018, 2, 298. |
[65] | Jia, B. Y; Wu, M. J.; Zhang, H.; Zeng, Y.; Wang, G. Y. New J. Chem. 2019, 43, 16981. |
[66] | Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940. |
[67] | Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. Nat. Chem. 2010, 2, 838. |
[68] | Kim, J.; Kim, D. O.; Kim, D. W.; Park, J.; Jung, M. S. Inorg. Chim. Acta 2012, 390, 22. |
[69] | Kim, J.; McNamara, N. D.; Her, T. H.; Hicks, J. C. ACS Appl. Mater. Interface 2013, 5, 11479. |
[70] | Kim, J.; Neumann, G. T.; McNamara, N. D.; Hicks, J. C. J. Mater. Chem. A 2014, 2, 14014. |
[71] | Leus, K.; Vanhaelewyn, G.; Bogaerts, T.; Liu, Y. Y.; Esquivel, D.; Callens, F.; Marin, G. B.; Van Speybroeck, V.; Vrielinck, H.; Van Der Voort, P. Catal. Today 2013, 208, 97. |
[72] | Kim, J.; Ok Kim, D.; Wook Kim, D.; Sagong, K. J. Solid State Chem. 2015, 230, 110. |
[73] | Huang, Z. Y.; Liu, D.; Camacho-Bunquin, J.; Zhang, G. H.; Yang, D. L.; López-Encarnación, J. M.; Xu, Y. J.; Ferrandon, M. S.; Niklas, J.; Poluektov, O. G.; Jellinek, J.; Lei, A.; Bunel, E. E.; Delferro, M. Organometallics 2017, 36, 3921. |
[74] | Bravo-Sanabria, C. A.; Solano-Delgado, L. C.; Ospina-Ospina, R.; Martínez-Ortega, F.; Ramírez-Caballero, G. E. Microporous Mesoporous Mater. 2020, 305, 110359. |
[75] | Sun, D.; Liu, W. J.; Qiu, M.; Zhang, Y. F.; Li, Z. H. Chem. Commun. 2015, 51, 2056. |
[76] | Zeama, M.; Morsy, M.; Abdel-Azeim, S.; Abdelnaby, M.; Alloush, A.; Yamani, Z. Inorg. Chim. Acta 2020, 501, 119287. |
[77] | Gao, W. Y.; Ngo, H. T.; Niu, Z.; Zhang, W. J.; Pan, Y. X.; Yang, Z. Y.; Bhethanabotla, V. R.; Joseph, B.; Aguila, B.; Ma, S. ChemSusChem 2020, 13, 6273. |
[78] | Shi, L. T.; Wu, C. C.; Wang, Y.; Dou, Y. H.; Yuan, D.; Li, H.; Huang, H. W.; Zhang, Y.; Gates, I. D.; Sun, X. D.; Ma, T. Y. Adv. Funct. Mater. 2022, 32, 2202571. |
[79] | Wang, A.; Zhou, Y. J.; Wang, Z. L.; Chen, M.; Sun, L. Y.; Liu, X. RSC Adv. 2016, 6, 3671. |
[80] | Navarro Amador, R.; Carboni, M.; Meyer, D. RSC Adv. 2017, 7, 195. |
[81] | Feng, Y.; Chen, Q.; Cao, M. J.; Ling, N.; Yao, J. F. ACS Appl. Nano Mater. 2019, 2, 5973. |
[82] | Liu, T.; Tang, S.; Wei, T.; Chen, M. W.; Xie, Z. J.; Zhang, R. Q.; Liu, Y. J.; Wang, N. Cell Rep. Phys. Sci. 2022, 3, 100892. |
[83] | Santiago Portillo, A.; Baldoví, H. G.; García Fernandez, M. T.; Navalón, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. J. Phys. Chem. C 2017, 121, 7015. |
[84] | Bahmani, M.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. J. Solid State Chem. 2020, 286, 121304. |
[85] | Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. Chemosphere 2021, 267, 129206. |
[86] | Smith, S. J. D.; Ladewig, B. P.; Hill, A. J.; Lau, C. H.; Hill, M. R. Sci. Rep. 2015, 5, 7823. |
[87] | Smith, S. J. D.; Lau, C. H.; Mardel, J. I.; Kitchin, M.; Konstas, K.; Ladewig, B. P.; Hill, M. R. J. Mater. Chem. A 2016, 4, 10627. |
[88] | Avci, G.; Altintas, C.; Keskin, S. J. Phys. Chem. C 2021, 125, 17311. |
[89] | Xu, T. T.; Sheng, F. M.; Wu, B.; Shehzad, M. A.; Yasmin, A.; Wang, X. X.; He, Y.; Ge, L.; Zheng, X. S.; Xu, T. W. J. Membrane Sci. 2020, 615, 118608. |
[90] | Ye, G.; Qi, H.; Li, X. L.; Leng, K. Y.; Sun, Y. Y.; Xu, W. ChemPhysChem 2017, 18, 1903. |
[91] | Piscopo, C. G.; Voellinger, L.; Schwarzer, M.; Polyzoidis, A.; Bo?kovi?, D.; Loebbecke, S. ChemistrySelect 2019, 4, 2806. |
[92] | Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C. Y.; Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2014, 4, 2496. |
[93] | Santiago-Portillo, A.; Navalón, S.; álvaro, M.; García, H. J. Catal. 2018, 365, 450. |
[94] | Ye, J. Y.; Gagliardi, L.; Cramer, C. J.; Truhlar, D. G. J. Catal. 2018, 360, 160. |
[95] | Qin, M. H.; Shi, Y. M.; Lu, D. K.; Deng, J. J.; Shi, G. Y.; Zhou, T. S. Appl. Surf. Sci. 2022, 595, 153494. |
[96] | Liu, Q. J.; Sun, N. R.; Gao, M. X.; Deng, C. H. ACS Sustainable Chem. Eng. 2018, 6, 4382. |
/
〈 |
|
〉 |