Research on the Preparation and Potassium Storage Performance of F, N Co-doped Porous Carbon Nanosheets
Received date: 2022-12-12
Online published: 2023-03-30
Supported by
National Natural Science Foundation of China(22209204); National Natural Science Foundation of China(22279162); National Natural Science Foundation of China(21975283); Natural Science Foundation of Jiangsu Province(BK20221140); China Postdoctoral Science Foundation(2022M713364)
Potassium-ion capacitor (PIC) is a new type of electrochemical energy storage device, and carbon-based materials are considered as one of the most promising candidate anode materials for K+ storage. However, the migration rate of K+ is slow and the material structure is easy to be damaged during the intercalation and de-intercalation processes because the K+ has a larger radius, resulting in a significant decline in performance. Therefore, the development of low-cost carbon materials to meet the thermodynamic and kinetic requirements of K+ diffusion has become the bottleneck of current development. In this work, the F and N co-doped porous carbon nanosheets (FNCPC) were prepared by direct high-temperature carbonization, in which the low-cost coal pitch as the carbon source, polytetrafluoroethylene as the fluorine source and sodium chloride as the template agent. The structure design of the nanosheet effectively shortens the transport path of ions, and the co-doping of F and N widens the layer spacing of carbon, alleviates the volume expansion problem, and also forms more surface defects, which provides more reactive sites for K+ storage. In addition, electrochemical kinetic analysis and density functional theory (DFT) show that the FNCPC has remarkable pseudocapacitance characteristics and strong K adsorption energy. Benefiting from the synergistic optimization of structure and chemical properties, the FNCPC anode exhibits excellent potassium storage capacity (a high specific capacity of 212.8 mAh•g-1 at 2 A•g-1) and good cyclic stability. Furthermore, the PIC (AC//FNCPC) was constructed by using commercial activated carbon (AC) as cathode electrode and FNCPC as anode electrode, which delivers a maximum energy density of 87.5 Wh•kg-1, and has a capacity retention rate of 86.1% after 3000 cycles, showing a very broad application prospect.
Jiangmin Jiang , Xinran Zheng , Yating Meng , Wenjie He , Yaxin Chen , Quanchao Zhuang , Jiaren Yuan , Zhicheng Ju , Xiaogang Zhang . Research on the Preparation and Potassium Storage Performance of F, N Co-doped Porous Carbon Nanosheets[J]. Acta Chimica Sinica, 2023 , 81(4) : 319 -327 . DOI: 10.6023/A22120494
[1] | Wang, C.; Liu, T.; Yang, X.; Ge, S.; Stanley, N. V.; Rountree, E. S.; Leng, Y.; McCarthy, B. Nature 2022, 611, 485. |
[2] | Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. |
[3] | Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T.; Dinca, M.; Kornyshev, A. A.; Feng, G. Nat. Mater. 2020, 19, 552. |
[4] | Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Acta Chim. Sinica 2021, 79, 139. (in Chinese) |
[4] | (常智, 乔羽, 杨慧军, 邓瀚, 朱星宇, 何平, 周豪慎, 化学学报, 2021, 79, 139.) |
[5] | Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. J. Electrochem. Soc. 2001, 148, A930. |
[6] | Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457. |
[7] | Li, B.; Zheng, J.; Zhang, H.; Jin, L.; Yang, D.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y.; Gong, R.; Zheng, J. P.; Zhang, C. Adv. Mater. 2018, 30, 1705670. |
[8] | Aravindan, V.; Gnanaraj, J.; Lee, Y.; Madhavi, S. Chem. Rev. 2014, 114, 11619. |
[9] | Naoi, K.; Ishimoto, S.; Miyamoto, J.; Naoi, W. Energy Environ. Sci. 2012, 5, 9363. |
[10] | Shao, M.; Li, C.; Li, T.; Zhao, H.; Yu, W.; Wang, R.; Zhang, J.; Yin, L. Adv. Funct. Mater. 2020, 30, 2006561. |
[11] | Gu, X.; Hong, Y.; Ai, G.; Wang, C.; Mao, W. Acta Chim. Sinica 2018, 76, 644. (in Chinese) |
[11] | (顾晓瑜, 洪晔, 艾果, 王朝阳, 毛文峰, 化学学报, 2018, 76, 644.) |
[12] | Wu, L.; Gu, M.; Feng, Y.; Chen, S.; Fan, L.; Yu, X.; Guo, K.; Zhou, J.; Lu, B. Adv. Funct. Mater. 2022, 32, 2109893. |
[13] | Hu, Y.; Fan, L.; Rao, A. M.; Yu, W.; Zhuoma, C.; Feng, Y.; Qin, Z.; Zhou, J.; Lu, B. Natl. Sci. Rev. 2022, 9, nwac134. |
[14] | Fan, L.; Hu, Y.; Rao, A. M.; Zhou, J.; Hou, Z.; Wang, C.; Lu, B. Small Methods 2021, 5, 202101131. |
[15] | Liu, S.; Kang, L.; Henzie, J.; Zhang, J.; Ha, J.; Amin, M. A.; Hossain, M. S. A.; Jun, S. C.; Yamauchi, Y. ACS Nano 2021, 15, 18931. |
[16] | Dong, S.; Lv, N.; Wu, Y.; Zhu, G.; Dong, X. Adv. Funct. Mater. 2021, 31, 2100455. |
[17] | Wang, B.; Zhang, Z.; Yuan, F.; Zhang, D.; Wang, Q.; Li, W.; Li, Z.; Wu, Y. A.; Wang, W. Chem. Eng. J. 2022, 428, 131093. |
[18] | Zhang, D.; Li, L.; Deng, J.; Gou, Y.; Fang, J.; Cui, H.; Zhao, Y.; Shang, K. ChemSusChem 2021, 14, 1974. |
[19] | Sajjad, M.; Cheng, F.; Lu, W. RSC Adv. 2021, 11, 25450. |
[20] | Liu, M.; Chang, L.; Le, Z.; Jiang, J.; Li, J.; Wang, H.; Zhao, C.; Xu, T.; Nie, P.; Wang, L. ChemSusChem 2020, 13, 5837. |
[21] | Dong, Q.; Wu, F.; Bai, Y.; Wu, C. Acta Chim. Sinica 2021, 79, 1461. (in Chinese) |
[21] | (董瑞琪, 吴锋, 白莹, 吴川, 化学学报, 2021, 79, 1461.) |
[22] | Vaalma, C.; Buchholz, D.; Passerini, S. Curr. Opin. Electrochem. 2018, 9, 41. |
[23] | Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. Adv. Energy Mater. 2017, 7, 1602911. |
[24] | Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9, 4404. |
[25] | Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Angew. Chem., Int. Ed. 2019, 58, 10500. |
[26] | Wang, J.; Wang, H.; Zang, X.; Zhai, D.; Kang, F. Batteries & Supercaps 2021, 4, 554. |
[27] | Wu, X.; Chen, Y.; Xing, Z.; Lam, C. W. K.; Pang, S.; Zhang, W.; Ju, Z. Adv. Energy Mater. 2019, 9, 1900343. |
[28] | Ye, J.; Simon, P.; Zhu, Y. Natl. Sci. Rev. 2020, 7, 191. |
[29] | Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Kar, K. K. ACS Appl. Mater. Interfaces 2022, 14, 20306. |
[30] | Ding, H.; Zhou, J.; Rao, A. M.; Lu, B. Natl. Sci. Rev. 2021, 8, nwaa276. |
[31] | Li, S.; Deng, H.; Chu, Z.; Wang, T.; Wang, L.; Zhang, Q.; Cao, J.; Cheng, Y.; Huang, Y.; Zhu, J.; Lu, B. ACS Appl. Mater. Interfaces 2021, 13, 50005. |
[32] | Sun, Y.; Wang, H.; Wei, W.; Zheng, Y.; Tao, L.; Wang, Y.; Huang, M.; Shi, J.; Shi, Z.; Mitlin, D. ACS Nano 2021, 15, 1652. |
[33] | Deng, H.; Wang, L.; Li, S.; Zhang, M.; Wang, T.; Zhou, J.; Chen, M.; Chen, S.; Cao, J.; Zhang, Q.; Zhu, J.; Lu, B. Adv. Funct. Mater. 2021, 31, 2107246. |
[34] | Yuan, F.; Sun, H.; Zhang, D.; Li, Z.; Wang, J.; Wang, H.; Wang, Q.; Wu, Y.; Wang, B. J. Colloid Interface Sci. 2022, 611, 513. |
[35] | Li, Q.; Sun, Y.; Shi, K.; Li, J.; Jian, W.; Zhang, W.; Li, H.; Wu, M.; Dang, H.; Liu, Q. ACS Appl. Energy Mater. 2022, 5, 14401. |
[36] | Liu, M.; Chang, L.; Wang, J.; Li, J.; Jiang, J.; Pang, G.; Wang, H.; Nie, P.; Zhao, C.; Xu, T.; Wang, L. J. Power Sources 2020, 469, 228415. |
[37] | Li, Z.; Lin, J.; Li, B.; Yu, C.; Wang, H.; Li, Q. J. Energy Storage 2021, 44, 103437. |
[38] | Zhang, C.; Li, Q.; Wang, T.; Miao, Y.; Qi, J.; Sui, Y.; Meng, Q.; Wei, F.; Zhu, L.; Zhang, W.; Cao, P. Nanoscale 2022, 14, 6339. |
[39] | Gao, J.; Wang, G.; Wang, W.; Yu, L.; Peng, B.; El-Harairy, A.; Li, J.; Zhang, G. ACS Nano 2022, 16, 6255. |
[40] | Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. Adv. Energy Mater. 2020, 10, 2001239. |
[41] | Huang, L.; Luo, Z.; Luo, M.; Zhang, Q.; Zhu, H.; Shi, K.; Zhu, S. J. Energy Storage 2021, 38, 102509. |
[42] | Wang, P.; Gong, Z.; Wang, D.; Hu, R.; Ye, K.; Gao, Y.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. Electrochim. Acta 2021, 389, 138799. |
[43] | Zhang, T.; Mao, Z.; Shi, X.; Jin, J.; He, B.; Wang, R.; Gong, Y.; Wang, H. Energy Environ. Sci. 2022, 15, 158. |
[44] | Guo, W.; Geng, C.; Sun, Z.; Jiang, J.; Ju, Z. J. Colloid Interface Sci. 2022, 623, 1075. |
[45] | Chen, Y.; Xi, B.; Huang, M.; Shi, L.; Huang, S.; Guo, N.; Li, D.; Ju, Z.; Xiong, S. Adv. Mater. 2022, 34, 2108621. |
[46] | Huang, S.; Li, Z.; Wang, B.; Zhang, J.; Peng, Z.; Qi, R.; Wang, J.; Zhao, Y. Adv. Funct. Mater. 2018, 28, 1706294. |
[47] | Jiang, J.; Yuan, J; Nie, P.; Zhu, Q.; Chen, C.; He, W.; Zhang, T.; Dou, H.; Zhang, X. J. Mater. Chem. A 2020, 8, 3956. |
[48] | Wei, F.; He, X.; Ma, L.; Zhang, H.; Xiao, N.; Qiu, J. Nano Micro Lett. 2020, 12, 1. |
[49] | Li, S.; Liu, P.; Zheng, X.; Wu, M. Electrochim. Acta 2022, 428, 140921. |
[50] | Ghosh, S.; Bhattacharjee, U.; Patchaiyappan, S.; Nanda, J.; Dudney, N. J.; Martha, S. K. Adv. Energy Mater. 2021, 11, 2100135. |
[51] | Na, W.; Jun, J.; Park, J. W.; Lee, G.; Jang, J. J. Mater. Chem. A 2017, 5, 17379. |
[52] | Jiang, J.; Nie, P.; Ding, B.; Zhang, Y.; Xu, G.; Wu, L.; Dou, H.; Zhang, X. J. Mater. Chem. A 2017, 5, 23283. |
[53] | Sim, Y.; Kim, S. J.; Janani, G.; Chae, Y.; Surendran, S.; Kim, H.; Yoo, S.; Seok, D. C.; Jung, Y. H.; Jeon, C.; Moon, J.; Sim, U. Appl. Surf. Sci. 2020, 507, 145157. |
[54] | Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X.; Huang, H.; Shi, P.; Yao, Y.; Yang, H.; Li, D.; Zhou, X.; Chen, Q.; Feng, Y.; Rui, X.; Yu, Y. ACS Nano 2021, 15, 10217. |
[55] | Lu, X.; Pan, X.; Fang, Z.; Zhang, D.; Xu, S.; Wang, L.; Liu, Q.; Shao, G.; Fu, D.; Teng, J.; Yang, W. ACS Appl. Mater. Interfaces 2021, 13, 41619. |
[56] | Zhuang, Q.; Yang, Z.; Zhang, L.; Cui, Y. Prog. Chem. 2020, 32, 761. |
[57] | Shen, L.; Lv, H.; Chen, S.; Kopold, P.; van Aken, P. A.; Wu, X.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1700142. |
[58] | Le, Z.; Liu, F.; Nie, P.; Li, X.; Liu, X.; Bian, Z.; Chen, G.; Wu, H. B.; Lu, Y. ACS Nano 2017, 11, 2952. |
[59] | Valencia, F.; Romero, A. H.; Ancilotto, F.; Silvestrelli, P. L. J. Phys. Chem. B 2006, 110, 14832. |
[60] | Jin, L.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J.; Andrei, P.; Zhang, J.; Zheng, J. P. Energy Environ. Sci. 2020, 13, 2341. |
[61] | Li, J.; Hu, X.; Zhong, G.; Liu, Y.; Ji, Y.; Chen, J.; Wen, Z. Nano Micro Lett. 2021, 13, 1. |
/
〈 |
|
〉 |