Article

Polysaccharide Matrix-Induced Room-Temperature Phosphorescence of Organic Small Molecules

  • Yeqin Chen ,
  • Jinping Chen ,
  • Tianjun Yu ,
  • Yi Zeng ,
  • Yi Li
Expand
  • a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2023-03-14

  Online published: 2023-04-12

Supported by

National Natural Science Foundation of China(22090012); National Natural Science Foundation of China(22273117)

Abstract

Organic materials capable of room-temperature phosphorescence have attracted much attention due to their potentials in the fields of optoelectronics, sensing and imaging. The development of environmentally friendly matrices for inducing room-temperature phosphorescence can provide feasible and sustainable ways for the applications. The present study was designed to achieve matrix-induced room-temperature phosphorescence using polysaccharides as dispersive substrates for organic small molecules. 1-Naphthoic acid (NA) and 4,4'-biphenol (BP) were used as the chromophore to generate phosphorescence. NA and BP were doped in sodium carboxymethyl cellulose (CMC-Na), hyaluronic acid (HA) and chitosan, respectively. Room-temperature phosphorescence from NA and BP was observed in those doped polysaccharide films at ambient condition. The phosphorescence quantum yield of NA in the three polysaccharides was estimated to be about 0.03 and the average phosphorescence lifetime of NA in CMC-Na was estimated to be around 600 ms. The average phosphorescence lifetime of NA in HA and chitosan was estimated to be around 650 and 320 ms, respectively. The phosphorescence quantum yield decreased at high doping contents due to intermolecular quenching that may result from excimer formation and triplet- triplet annihilation of NA. BP in CMC-Na presented a phosphorescence quantum yield of about 0.05, which did not decrease with the increase of doping concentration, and the phosphorescence lifetime was about 1000 ms. The phosphorescence quantum yield of BP in HA and chitosan is about 0.03 and 0.006, respectively. The average phosphorescence lifetime of BP in HA and chitosan was estimated to be around 740 and 210 ms, respectively. Infrared spectroscopic studies showed that the polysaccharide substrates formed hydrogen bonds with NA and BP chromophores. The combination of hydrogen bond formation between the matrix and the emissive molecules, the rigid environment of the matrix and the protection of the chromphore from ambient oxygen led to the observation of phosphorescence of organic molecules at room-temperature. NA- and BP-doped CMC-Na solutions can be used to prepare room-temperature phosphorescence patterns by inkjet printing, enabling phosphorescence information encryption. This study can provide a new feasible way for the development of environmentally friendly room-temperature phosphorescence materials.

Cite this article

Yeqin Chen , Jinping Chen , Tianjun Yu , Yi Zeng , Yi Li . Polysaccharide Matrix-Induced Room-Temperature Phosphorescence of Organic Small Molecules[J]. Acta Chimica Sinica, 2023 , 81(5) : 450 -455 . DOI: 10.6023/A23030081

References

[1]
Zhang, L.; Zhao, W. L.; Li, M.; Lu, H. Y.; Chen, C. F. Acta Chim. Sinica 2020, 78, 1030. (in Chinese)
[1]
张亮, 赵文龙, 李猛, 吕海燕, 陈传峰, 化学学报, 2020, 78, 1030).
[2]
Wang, J. F.; Li, Z. Acta Chim. Sinica 2021, 79, 575. (in Chinese)
[2]
王金凤, 李振, 化学学报, 2021, 79, 575).
[3]
Shi, H. F.; Yao, W.; Ye, W. P.; Ma, H. L.; Huang, W.; An, Z. F. Acc. Chem. Res. 2022, 55, 3445.
[4]
Ma, L. W.; Ma, X. Sci. China Chem. 2023, 66, 304.
[5]
Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nat. Commun. 2018, 9, 2798.
[6]
Liu, X. Q.; Zhang, K.; Gao, J. F.; Chen, Y. Z.; Tung, C. H.; Wu, L. Z. Angew. Chem., Int. Ed. 2020, 59, 23456.
[7]
Wu, X.; Peng, X. L.; Chen, L. T.; Zhao, Z. J.; Tang, B. Z. ACS Mater. Lett. 2023, 5, 664.
[8]
Tian, Y.; Tong, X. B.; Li, J. J.; Gao, S. Y.; Cao, R. Chin. J. Chem. 2022, 40, 487.
[9]
Nie, F.; Zhou, B.; Yan, D. P. Chem. Eng. J. 2023, 453, 139806.
[10]
Zhang, X. P.; Liu, J. K.; Chen, B. A.; He, X. W.; Li, X. Y.; Wei, P. F.; Gao, P. F.; Zhang, G. Q.; Lam, J. W. Y.; Tang, B. Z. Matter 2022, 5, 3499.
[11]
Cao, P. S.; Chen, Q.; Wu, P. Chin. J. Chem. 2023, 41, 979.
[12]
Gu, L.; Shi, H. F.; Bian, L. F.; Gu, M. X.; Ling, K.; Wang, X.; Ma, H. L.; Cai, S. Z.; Ning, W. H.; Fu, L. S.; Wang, H.; Wang, S.; Gao, Y. R.; Yao, W.; Huo, F. W.; Tao, Y. T.; An, Z. F.; Liu, X. G.; Huang, W. Nat. Photonics 2019, 13, 406.
[13]
Ding, L. J.; Wang, X. D. J. Am. Chem. Soc. 2020, 142, 13558.
[14]
Song, J. M.; Ma, X. Chinese J. Org. Chem. 2021, 41, 4519. (in Chinese)
[14]
宋金明, 马骧, 有机化学, 2021, 41, 4519).
[15]
Zhao, W. J.; He, Z. K.; Tang, B. Z. Nat. Rev. Mater. 2020, 5, 869.
[16]
Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.
[17]
Singh, M.; Liu, K.; Qu, S. L.; Ma, H. L.; Shi, H. F.; An, Z. F.; Huang, W. Adv Opt Mater 2021, 9, 2002197.
[18]
Peng, Q.; Ma, H. L.; Shuai, Z. G. Acc. Chem. Res. 2021, 54, 940.
[19]
Yang, J.; Zhen, X.; Wang, B.; Gao, X. M.; Ren, Z. C.; Wang, J. Q.; Xie, Y. J.; Li, J. R.; Peng, Q.; Pu, K. Y.; Li, Z. Nat. Commun. 2018, 9, 840.
[20]
Zhang, X. P.; Du, L. L.; Zhao, W. J.; Zhao, Z.; Xiong, Y.; He, X. W.; Gao, P. F.; Alam, P.; Wang, C.; Li, Z.; Leng, J.; Liu, J. X.; Zhou, C. Y.; Lam, J. W. Y.; Phillips, D. L.; Zhang, G. Q.; Tang, B. Z. Nat. Commun. 2019, 10, 5161.
[21]
Zhou, Y. S.; Qin, W.; Du, C.; Gao, H. Y.; Zhu, F. M.; Liang, G. D. Angew. Chem., Int. Ed. 2019, 58, 12102.
[22]
Lai, Y. Y.; Zhao, Z. H.; Zheng, S. Y.; Yuan, W. Z. Acta Chim. Sinica 2021, 79, 93. (in Chinese)
[22]
来悦颖, 赵子豪, 郑书源, 袁望章, 化学学报, 2021, 79, 93).
[23]
Ma, X.; Xu, C.; Wang, J.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 10854.
[24]
Yu, Y. C.; Kwon, M. S.; Jung, J.; Zeng, Y. Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J. H.; Borisov, S. M.; Kim, J. Angew. Chem., Int. Ed. 2017, 56, 16207.
[25]
Hirata, S.; Totani, K.; Zhang, J. X.; Yamashita, T.; Kaji, H.; Marder, S. R.; Watanabe, T.; Adachi, C. Adv. Funct. Mater. 2013, 23, 3386.
[26]
Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Nano Res. 2017, 10, 3606.
[27]
Zhou, W. L.; Chen, Y.; Yu, Q. L.; Zhang, H. Y.; Liu, Z. X.; Dai, X. Y.; Li, J. J.; Liu, Y. Nat. Commun. 2020, 11, 4655.
[28]
Ma, X. K.; Zhang, W.; Liu, Z. X.; Zhang, H. Y.; Zhang, B.; Liu, Y. Adv. Mater. 2021, 33, 2007476.
[29]
Chen, B. A.; Huang, W. H.; Nie, X. C.; Liao, F.; Miao, H.; Zhang, X. P.; Zhang, G. Q. Angew. Chem., Int. Ed. 2021, 60, 16970.
[30]
Yuan, Z. Y.; Zou, L.; Chang, D. D.; Ma, X. ACS Appl. Mater. Inter. 2020, 12, 52059.
[31]
Yuan, Z.; Wang, J.; Chen, L.; Zou, L.; Gong, X.; Ma, X. CCS Chem. 2020, 2, 158.
[32]
Liu, L. X.; Chen, J. P.; Yu, T. J.; Hu, R.; Yang, G. Q.; Zeng, Y.; Li, Y. Chin. Chem. Lett. 2023, 34, 107649.
[33]
Chandross, E. A.; Dempster, C. J. J. Am. Chem. Soc. 1970, 92, 3586.
[34]
Mimura, T.; Itoh, M. J. Am. Chem. Soc. 1976, 98, 1095.
[35]
Lui, Y. H.; McGlynn, S. P. J. Mol. Spectrosc. 1974, 49, 214.
[36]
Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Angew. Chem., Int. Ed. 2014, 53, 11177.
[37]
Chen, C. J.; Huang, R. J.; Batsanov, A. S.; Pander, P.; Hsu, Y. T.; Chi, Z. G.; Dias, F. B.; Bryce, M. R. Angew. Chem., Int. Ed. 2018, 57, 16407.
[38]
Xu, Y. H.; Zhu, Y.; Kong, L. Q.; Sun, S. C.; Li, F.; Tao, F. R.; Wang, L. P.; Li, G. Chem. Eng. J. 2023, 453, 139753.
[39]
Zhou, W.; Wen, G. B.; Li, K. Y.; Xiong, H.; Zhang, J. M.; Lu, S. L.; Chen, X. D. Dyes Pigments 2022, 205, 110481.
Outlines

/